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Abstract

Locality and data layout are critical to the performance
of threaded parallel programs, but standard threading in-
terfaces incorrectly presume that data is equally accessible
from all threads. The gthread library’s locality framework
has been expanded to provide convenient CPU affinity. This
locality support enables development of three locality aware
distributed data structures: a memory pool, an array, and
a queue. This paper presents benchmark results illustrat-
ing the performance characteristics of these data structures
on an Altix ccNUMA SMP system, a highly multithreaded
Niagara-based server, and a conventional SMP worksta-
tion. The combination of locality and threading interface
with adaptive distributed data structures provides scalable
performance on multiple parallel architectures.

1. Introduction

Data placement is one of the most critical challenges
in multicore application performance. Increasingly, mul-
tiprocessor machines have non-uniform memory access
(NUMA) latencies. Unfortunately, parallel machines have
a wide variety of structural differences that impose a large
performance penalty on non-optimal data layout [5, 22], so
data locality must be exposed for performance.

Standard threading interfaces — such as pthreads [11],
OpenMP [20], and Intel Threading Building Blocks
(TBB) [12] — are designed for commodity multiprocessing
and multicore systems. They provide powerful and con-
venient tools for developing software tailored to such sys-
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tems. While these interfaces make it easy to create parallel
tasks, they assume that all data is equally accessible from all
threads. Because this assumption is generally false, these in-
terfaces do not maintain data and thread locality or provide
tools to discover and exploit system topology. Some operat-
ing systems provide mechanisms to discover machine topol-
ogy and to specify thread and memory block locality. Such
mechanisms are system-specific and generally non-portable.

Our solution to this problem is the qthread library [23],
which integrates locality with the threading interface. The
gthread library is a cross-platform threading library that pro-
vides lightweight threads, an integrated locality framework,
and lightweight synchronization in a way that maps well to
developing multithreaded architectures. It supports many
different operating systems and hardware architectures and
provides a consistent interface to their unique methods of
discovering and specifying locality. We expanded its lo-
cality framework and added distributed data structures that
adapt to NUMA environments. The new distributed data
structures hide the complexity of data locality. This paper
presents the design of a distributed memory pool, a distrib-
uted array, and two forms of distributed queue.

Benchmark results, gathered from several parallel archi-
tectures, demonstrate the scalability of these data structures.
By comparing operations-per-second and effective band-
width, the benchmarks show the importance of choosing ap-
propriate system-specific design parameters, such as mem-
ory distribution pattern and segment size.

The remainder of this paper is organized as follows. A
survey of related work is presented in Section 2. Section 3
summarizes the qthread library and the locality features it
provides. Section 4 describes the three architectures used to
benchmark the distributed data structures. The design of the
data structures, along with benchmark results demonstrating
their efficiency, is presented in Section 5. Section 6 suggests
future research.



Thread Operations

qthread_init(num_sheps)
initialize the library
qthread_finalize()
clean up, shut down the library
qthread_fork(func, arg, ret)
spawn a thread
qthread_fork_to(f, a, r, shep)
spawn a thread to the specified shepherd
qthread_migrate_to(shep)
move the calling thread to the specified
shepherd
qthread_distance(src, dest)
returns the distance between two shep-
herd IDs

Memory Pools

qpool_create(item_size)

ified size

returns aligned objects
qpool_alloc(pool)

get an object from the pool
qpool_free(pool, addr)

return an object to the pool
qpool_destroy(pool)

deallocates all pool memory

create a pool of objects of the spec-

qpool_create_aligned(i_s, align)
similar to qpool_create(), but

Array Operations Queue Operations

{qdiqlf}queue_create()
allocate a queue
{qdiglf}queue_enqueue(g, elem)
append an element to the the queue
same as qarray_create(), but | {qdiqlfjqueue_dequeue(queue)
guarantees item size will not get the head off the queue
change {qdiglf}queue_empty(queue)
qarray_elem(array, index) check if the queue contains any el-
returns a pointer to the specified el- ements
ement in the array {qdiqlf}queue_destroy(queue)
qarray_iter_loop(array, func, arg) deallocate a queue
iterate over the array elements in

qarray_create(count, unit_size)
allocate an array, distribute its
memory

qarray_create_tight(c, u_s)

parallel A glfqueue is a lock-free queue, and a

qarray_destroy(array) qdqueue is a distributed queue.
deallocate the array

Figure 1. Qthread API (abridged)

2. Related work

This research draws from three categories of prior work:
lightweight threading models, data structures, and topology
interfaces. Cilk [4] and OpenMP [20] are examples of con-
venient and lightweight threading models. However, they
ignore locality, forcing the programmer to rely on the sched-
uler to keep each thread near the data it is manipulating. Un-
fortunately, the work-stealing scheduling algorithms these
threading models use assume that all tasks can be performed
equally well on any processor, which is an invalid assump-
tion on NUMA machines with a high latency variability.

Concurrent vectors, hashes, and queues, such as provided
by Intel’s Threading Building Blocks [12] are good exam-
ples of data structures designed around parallel manage-
ment operations rather than data operations, ignoring local-
ity. Co-array Fortran [18] provides a parallel container —
the co-array — that integrates locality with the execution
model, but uses loader-defined static distribution. A distrib-
uted queue is a special case of a concurrent pool [15], which
is designed for parallel efficiency. Our distributed queue
uses locality information to combine Johnson’s stochastic
queue [13], the push-based queue by Arpaci-Dusseau et.
al. [3], and a high-speed lock-free queue based on the work
of Michael and Scott [16].

Counterintuitively, threading interfaces tend not to ad-
dress memory topology. This is probably a result of the his-
torical low variance in memory access latency [17]. Modern
and future large-scale shared-memory machines have larger
latency variances, and the impact is magnified by increasing
CPU speeds. Topology interfaces tend to be operating-sys-
tem specific. Linux systems largely rely on the libnuma [14]
library to exploit system topology. This library presents
computers as a set of numbered nodes, CPUs, and “physi-
cal” CPUs that overlap. The distance to a node’s own mem-
ory is normalized to ten, and other distances are expressed
on that scale. Without libnuma, Linux processes can de-
fine their CPU affinity using the sched_setaffinity () interface.
Unfortunately, this interface changes across kernel versions.

Software that must work reliably across multiple Linux sys-
tems must either detect the available interface variety or use
the Portable Linux Processor Affinity (PLPA) library [19],
which provides a stable interface. Solaris systems provide
the liblgrp library [21], which presents a hierarchical de-
scription of topology. Each locality group (Igrp) contains
a set of CPUs and/or additional Igrps and is associated with
a block of memory. Recent versions of the library can re-
port the latency between lgrps in machine-specific units. All
of these interfaces enable thread CPU affinity and libnuma
and liblgrp enable memory CPU affinity. Because these
interfaces manipulate the operating system’s scheduler and
memory subsystem, they can only affect things that the oper-
ating system schedules, which are inherently heavyweight.

Programming languages such as Chapel [8], X10 [6],
Fortress [2], and UPC [9], provide explicit locality as a
function of the programming environment. These languages
provide expressive semantics and can be effective in exploit-
ing available hardware resources. Unfortunately, they are
incompatible with existing software.

3. The gthread library

The qthread library [23] is a cross-platform lightweight
threading library with an integrated locality framework and
lightweight synchronization that bridges the gap between
commodity systems and developing multithreaded archi-
tectures. A “qthread” is a nearly-anonymous thread with
a small stack that lacks the expensive guarantees and fea-
tures of heavyweight threads, such as per-thread process
identifiers (PIDs), signal vectors, and the ability to be can-
celed. This lightweight nature supports large numbers of
threads with fast context-switching, enabling high-perfor-
mance fine-grained thread-level parallelism. The API of
the gthread library is summarized in Figure 1. The local-
ity framework has been expanded to support thread and data
affinity in parallel systems.

Virtually all computer architectures provide atomic op-
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Figure 2. System Topologies

erations, yet they are not directly accessible in most
programming interfaces; OpenMP is a notable excep-
tion. The qthread library provides an atomic incre-
ment via gthread_incr(), and atomic compare-and-swap with
gthread_cas(). Data-based blocking synchronization is a
powerful way to express task dependencies. The qthread
library provides both full/empty bit (FEB) and mutex-like
blocking operations. FEB operations are atomic read/writes
that depend on per-word full/empty status. Some systems,
such as the Cray MTA/XMT, provide hardware support for
FEB operations, but usually they must be emulated.

The qthread library uses cooperative-multitasking:
blocking operations trigger context switches. These context
switches occur in user space via function calls and are thus
cheaper than signal-based context switches. This approach
allows threads to hide communication latencies and avoid
context-switch overhead until unavailable data is needed.

Each qthread has a location, or “shepherd.” Shepherds
define immovable regions within the system. Qthreads
can be spawned directly to a specific shepherd with
gthread_fork_to(), and migrate between shepherds with
gthread_migrate_to().  Explicit migration guarantees that
threads cannot execute in unexpected places. Such control
previously required the use of platform-specific libraries and
heavyweight threads. The distance between shepherds may
be determined using the gthread_distance() function.

4. Parallel architectures

Several different systems with dramatically different
topologies are used to demonstrate using topology to inform
runtime decisions: a dual-processor dual-core Intel Xeon
5150 workstation, a 48-processor SGI Altix 3700 ccNUMA
SMP, and a dual-processor 16-core Sun Niagara 2 server.
These machines were selected to demonstrate three differ-
ent types of parallel systems: a common development work-
station, a large ccNUMA system, and a massively multi-
threaded chip architecture. The topology of each of these

machines is illustrated in Figure 2.

The Xeon system, Figure 2(a), is a dual-core dual-pro-
cessor. Each processor has its own cache but shares the
1066Mhz front-side bus. This system runs Linux, provid-
ing the libnuma interface. Due to the shared bus, libnuma
presents this system as a single node with four equidistant
processors. This lack of detail is unfortunate, since cache-
independence is an important aspect of the memory hierar-
chy. Without cache, the memory latency is uniform.

The Altix SMP, Figure 2(b), uses Intel Itanium 2 proces-
sors. The nodes are connected by dual 3.2 GB/s unidirec-
tional links. Each node has two CPUs and a large block of
RAM. The machine is divided into two components: one
(A) with 16-nodes the other (B) with 8. Component A is ar-
ranged in four clusters of four nodes. Component B’s nodes
form a dual-plane fat-tree. The two components are asym-
metrically connected by additional unidirectional links. The
system runs Linux with libnuma.

The Niagara 2 server, Figure 2(c), has two eight-core
processors. Each core supports eight concurrent hardware
threads, for a total of 128 concurrent hardware threads. Each
core has its own bank in the L2 cache which is accessible
from any core in that processor. Each cache bank pair shares
a dual channel FBDIMM memory controller. This system
runs Solaris 10 and supports the liblgrp interface.

5. Distributed data structures

Locality awareness can improve the performance of
distributed data structures. Three data structure designs
demonstrate this opportunity: a pool, an array, and a queue.
These data structure types are cornerstones of application
design, and are used in a wide range of high-performance
applications. The key feature of these new designs is that
they adapt to the topology of the system in use at runtime.
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Figure 3. Multithreaded 44-byte memory allocations/sec, 100-million allocations.

5.1. Distributed memory pool

Memory allocation is a frequently overlooked detail that
can significantly impact performance. Standard memory al-
location libraries are typically designed for general-purpose
allocation in single-threaded applications, balancing alloca-
tion speed with limiting fragmentation, without concern for
locality. Memory locality is typically specified per-page and
needs an abstraction for general-purpose use.

A set of memory pools with mutexes to provide thread-
safe access is functional, but suffers from high mutex over-
head. The gqthread memory pool, gpool, is implemented as
a set of location-specific lock-free stacks which provide fast
access to local memory. Topology information is used to
pull memory from nearby memory pools when necessary.

A gpool is created via gpool_create(). Once created, el-
ements can be fetched from the pool with gpool_alloc() and
returned to the pool using gpool_free(). A pool is destroyed
by gpool_destroy(). Each allocation is pulled from the local
stack. Local memory is allocated in large blocks and por-
tioned out in chunks of the size specified at pool creation.
Memory that is freed is pushed onto a local lock-free re-use
stack. Upon allocation, this stack is checked first. If the
local stack is empty, memory is pulled from the current lo-
cal large allocated block. When this block is exhausted, the
re-use stacks of neighboring shepherd pools are checked, in
random order. If none of them have memory, a new large
block of memory is allocated from the local node’s mem-
ory, and added to a list of allocated blocks. If allocation
fails, the allocated blocks of all pools are checked, in order
of their distance from the requesting thread. If no memory
can be found, the allocation request fails.

The graphs in Figure 3 compare the allocations per sec-
ond of a multithreaded application that allocates, writes
to, and deallocates 100 million separate 44-byte memory
blocks (the size of a pthread_mutex_t on some systems).
Three allocation methods are compared on the Linux sys-
tems: the qpool, a similar mutex-protected concurrent mem-
ory pool, and standard malloc. The gpool outpaces glibc
malloc [10] at scale. The mutex-based memory pools suf-

fer from Linux’s slow mutex operations. The malloc im-
plementation, while not returning location-specific memory,
uses adaptive arena allocation to scale. The Solaris mal-
loc library, designed for serial applications, is uniformly
slow. Solaris’s multithreaded mtmalloc library provides
better performance for relatively low numbers of threads,
but does not appear to be designed for more than sixteen
threads and can only allocate blocks in power-of-two sizes.

5.2. Distributed array

The distributed array, or qarray, uses a basic “blocked”
design, with node-specific array segments. We examine
three aspects of this design: segment distribution pattern,
segment size, and element size. The qarray distributes its
memory when created, via garray_create(). Once created, ele-
ments within the array can be accessed with qarray_elem(), or
using pointer math within a segment. Convenient parallel it-
eration can be done with qarray_iter_loop (). This mechanism
uses a user-specified function to process index ranges, en-
suring that the function executes near the range it processes.
Arrays are deallocated with garray_destroy().

The distribution pattern and method of locating segments
impacts performance. One option is to place each segment
according to its order in the array, via a hash. This has the
virtues of simplicity and uniformity, and avoids accessing
memory to locate segments, but cannot relocate segments.
Alternately, the location of each segment can be stored with
the segment. Segments must be accessed to discover their
location, but this enables a wider range of distribution pat-
terns and segment relocation. Several options are compared
in Figure 4. The “Static Hash” pattern uses the segment
order to determine segment locations. The “Dist” patterns
all store segment locations within the segments. “Dist Reg
Stripes” distributes similarly to the Static Hash, “Dist Rand”
distributes randomly, and “Dist Reg Fields” clusters sequen-
tial segments evenly. “Serial Iteration” is not a distribution
pattern, but serves to compare the distribution patterns with
typical non-qarray array iteration.

It is worth noting that parallel iteration scales well on
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Figure 5. Impact of segment size and distribution pattern on multithreaded memory bandwidth over

100-million element arrays.

these systems. Iteration with 128 threads was 86.2x faster
than serial iteration on the Niagara 2. Iteration with 32
nodes was 31.2x faster than serial iteration on the Altix. The
Xeon workstation peaked at 2.1x faster than serial operation,
likely because there are only two memory controllers, com-
peting for a relatively low-bandwidth memory bus.

The static hash was the fastest on the Altix and Xeon be-
cause accessing remote memory to query its location is slow
and causes incorrect prefetching. Thus, static hash is the
default distribution method for all but the Niagara 2. The
Niagara 2 benefits from fetching “incorrect” blocks because
what is incorrect for one thread is likely correct for a nearby
thread. Dist Reg Stripes leverages the Niagara 2’s shared
cache by clustering the working set of memory.

Distributed array performance also depends on the distri-
bution granularity, or “segment size.” Most locality-aware
memory allocation methods operate on page-size memory
blocks, thereby defining the minimum segment size. Thus,
only large arrays can be efficiently distributed, and the seg-
ment size is a multiple of the page size. Figure 5 illustrates
the impact of segment size. Larger segment sizes can ei-
ther empower prefetching or create load imbalances. Dis-

tribution has a significant impact on optimal segment size.
The static hash performance varied less than 12% on the
Niagara 2 server, while the best performing segment size
for Dist Reg Fields provides a 2.2x improvement over the
worst performing size. The static hash distribution provided
the best small segment size performance of the distribution
methods tested; other methods need multiple pages to mask
the cost of incorrect prefetching— 16 pages is a good default.

Alignment can be critical to taking full advantage of the
cache as well as avoiding unnecessary bus traffic. Caches
almost always load aligned data from memory. Accessing
unaligned data can result in multiple load instructions, com-
positing instructions, and even crashes. For example, Fig-
ure 6(c) shows that the penalty for using unaligned data can
be as high as a 50% reduction in bandwidth. The spikes and
variances in bandwidth shown are repeatable, not the result
of temporary issues. Avoiding such problems is a task that
is often left to the compiler to handle, particularly for global
and stack variables. Since a qarray performs layout at run-
time, data alignment must be handled manually.

Figure 6 shows the impact of element size and alignment
on performance. These graphs compare the memory band-
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width achieved while accessing million-element arrays with
a variety of element sizes. A packed array is compared to an
8-byte aligned array. Manually aligning data has a clear ben-
efit for small element sizes, but has less benefit with large el-
ement sizes. This is likely because unaligned layout is more
condensed, and that benefit outweighs the penalty for un-
aligned access beyond a certain size element. Thus, unless
otherwise directed, the qarray automatically rounds element
sizes under 64 bytes to the next-largest multiple of eight.

5.3. Distributed queue

Parallel queue designs depend on the use-case. If a
queue is a buffer between two threads, assumptions can im-
prove speed. For example, assuming low contention for
the queue’s head and tail, there need only be one of each.
Queues are also used for distributing work among multiple
threads, with multiple producers and multiple consumers. In
that situation, the guarantees of a simpler queue, like global
ordering, may be relaxed in order to increase speed. Such
a queue may prefer dequeueing nearby elements over the
oldest elements in the overall queue.

The qthread library provides both types of queue.
The qlfqueue, based on Michael and Scott’s lock-free
queue [16], guarantees global ordering. The end-to-end or-
dered queue is the qdqueue. New qlfqueues are created with
glfqueue_create() and destroyed with gliqueue_destroy(). Ele-
ments may be queued with glfqueue_enqueue() and dequeued
with glfqueue_dequeue(). A quick element check may be per-
formed with glfqueue_empty(). Equivalent qdqueue functions
begin with “qdqueue” instead of “qlfqueue.”

Figure 7 illustrates the effect of strict ordering on the
scalability of a queue by comparing the lock-free qlfqueue
to a single-mutex queue implementation from the cprops li-
brary [1]. Ensuring global ordering requires a serialized crit-
ical section. A lock-free queue is faster than a mutex-based
queue because it uses hardware assistance to minimize or-
dering overhead. Nevertheless, this serialization acts as a
bottleneck that precludes scaling.

The core of an end-to-end ordered queue is matching con-
sumers to producers. A central matchmaker is a simple ap-
proach, but creates a bottleneck. Hierarchical matchmak-
ing reduces consumer contention, but increases the work
of producers without addressing their bottleneck issues. A
“stochastic distributed queue” [13], where consumers re-
peatedly probe random producer queues until satisfied, is
efficient when the queues are rarely empty. But if queues
are frequently empty, random polling creates unnecessary
work. Random polling can be avoided with advertisements.

Per location, the qdqueue uses a qlfqueue, a list of
“ads” received, and a record of the last consumed element’s
source. Elements are enqueued locally. If the queue was
not empty, ads are posted to nearby queues. An ad informs
remote consumers that there is data available in this queue.
The set of “neighbor” shepherds to receive advertisements
from any given shepherd is determined at setup time, based
on distance. Thus, the maximum work of a producer is fixed,
independent of the size of the system. A producer can avoid
resending ads by tagging them with a counter and tracking
the highest consumed ad counter value. If the last-issued
ads have not been consumed, ads need not be re-issued.

To dequeue, the local queue has priority. If the local
queue was empty, any known ads are checked in order
of distance. The source of the last-dequeued element is
recorded locally. When responding to an ad, update the ad-
vertiser’s record of ads consumed. If none of the ads result
in an element, it is necessary to check all remote queues, in
the order of distance from the consumer. If a remote queue
is empty, that queue’s last-consumed record is treated as an
ad. If an ad is received while checking remote queues, it is
checked immediately. Thus, consumers cooperate to find el-
ements. If all remote queues are empty, the consumer must
either return empty-handed or wait for an ad to be posted.

Figure 8 compares the scaling of the gqdqueue with the
TBB concurrent queue, which have similar ordering guar-
antees. The benchmark, in both cases, transfers word-size
data using a variable number of enqueueing threads with
an identical number of dequeueing threads. The qdqueue
can use CPU pinning — labeled “(Affinity).” In single-
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Figure 8. The ops/sec of end-to-end ordered multithreaded queues with small elements.

threaded mode the qdqueue is just as fast as the glfqueue, but
improves on the glfqueue’s multi-thread performance. At
scale, the qdqueue performed 9.6x better than the qlfqueue
on the Altix, 72x better on the Niagara 2, and 4x better on
the Xeon. The Niagara 2’s performance is a result of cheap
communication via shared cache. Cache-coherency penal-
izes shared information on the Altix and Xeon. Figure 9,
illustrates the impact of using larger (1024-byte) blocks of
data. Large inter-node transfers impose a higher penalty
than small ones, magnifying the benefit of location affinity.

6. Future work

There are many additional array operations common in
scientific computing that benefit from locality-awareness.
Array stencils are common in signal processing, image pro-
cessing, and solving partial differential equations. Fore-
knowledge of the stencils can be used to influence distrib-
uted array layout, such as by aligning stencil and segment
boundaries and avoiding unnecessary thread spawns. Ar-
ray combination, such as in string comparison, genetic re-
search, matrix multiplication, and multi-dimensional arrays,
are also common. These array combination operations have
well-understood memory access patterns that provide op-
portunities for locality-aware optimization. A key question
is where to best execute operations with disperse input.

MapReduce [7] is a powerful asynchronous and eas-
ily pipelined data-processing abstraction popularized by
Google. It could be implemented with distributed queues
instead of the usual “master” node approach, naturally pre-
serving locality between stages. This design may be use-
ful for exploring the best number of workers at each stage,
the optimal information transfer method, and the effect of
worker loss and worker migration.

7. Conclusion

Developing portable locality-aware data structures, even
with the advantage a threading library with integrated lo-
cality, is a significant challenge. We have presented a
portable threading interface that integrates locality, several
data structure designs that use locality information, and ex-
amined the selection of optimal system-specific design pa-
rameters. We have demonstrated the effectiveness of lo-
cality-aware design in distributed data structures. Mem-
ory pools can be up to 155 times faster than traditional
malloc() while providing location-specific memory. The qar-
ray distributed array design supports strong-scaling on large
NUMA systems, executing 31.2 times faster with 32 nodes
than with one. The qdqueue distributed queue design pro-
vides up to a 47x improvement over a fast lock-free queue
by providing only end-to-end ordering. Locality-awareness
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Figure 9. The ops/sec of end-to-end ordered multithreaded queues with large (1024 byte) elements.

provides up to an 8.3x improvement in performance over the
state-of-the-art concurrent queues on a large NUMA system.
Importantly, the use of locality information does not signif-
icantly impact serial performance or performance on small
systems with uniform memory access latencies. Exposing
hardware non-uniformity is becoming common, and the uni-
fication of thread handling and topology is an important di-
rection for future shared-memory data structure research.
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