
Thread Migration to Improve Synchronization Performance

Srinivas Sridharan, Brett Keck, Richard Murphy, Surendar Chandra, Peter Kogge

CSE Department, University of Notre Dame

384 Fitzpatrick Hall, Notre Dame, IN 46556

{ssridhar, bkeck, rcm, surendar, kogge}@nd.edu

Abstract

A number of prior research efforts have investigated

thread scheduling mechanisms to enable better reuse of

data in a processor’s cache. We propose to exploit the lo-

cality of the critical section data by enforcing an affinity

between locks and the processor that has cached the execu-

tion state of the critical section protected by that lock. We

investigate the idea of migrating threads to the “lock hot”

processor, enabling the threads to reuse the critical section

data from the processor’s cache and release the lock faster

for other threads. We argue that this mechanism should

improve the scalability of performance for highly multi-

threaded scientific applications. We test our hypothesis on

a 4-way Itanium2 SMP running the 2.6.9 Linux kernel. We

modified the Linux 2.6 kernel’s O(1) scheduler using in-

formation from the Futex (Fast User-space muTEX) mech-

anism in order to implement our policy. Using synthetic

micro-benchmarks, we show 10-90% performance improve-

ment in cpu cycles, L2 miss ratios and bus requests for ap-

plications that operate on significant amounts of data inside

the critical section protected by locks. We also evaluate our

policy for the SPLASH2 application suite.

Keywords: SMP, Multithreading, Synchronization, SMP

Scheduler, Thread Migration, Profiling and tuning applica-

tions, Intel R⇤Itanium2, Linux 2.6 Kernel, SPLASH2 suite

1 Introduction

Scheduling threads on shared memory multiprocessors

(especially SMPs) based on cache affinity has been previ-

ously investigated in [7], [17], [16] and [14]. These pro-

posals attempt to efficiently reuse the thread’s state that is

already in a processor’s cache by enforcing an affinity be-

tween the processor and the threads executing on them. In

this paper, we apply this idea to locks and data in critical

sections protected by these locks. The locality of the crit-

ical section data can be exploited by enforcing an affinity

between locks and the processor that has cached the execu-

tion state of the critical section protected by that lock. We

investigate the idea of migrating threads to the “lock hot”

processor, enabling the threads to reuse the critical section

data from the processor’s cache and release the lock faster

for other threads.

The main advantage of this approach is that since we are

enabling threads to be closer to the execution state accessed

within a critical section. This technique minimizes costly

cache misses and improves the cache locality awareness

of multithreaded scientific applications. Further, moving

threads that do not require the lock away from the processor

enables the thread holding the lock to complete its execu-

tion faster and release the lock quicker for other contending

threads. Finally reduction in cache misses also translates to

reduction in number of requests on the communication net-

work (shared bus in the case of small scale SMP) and indi-

rectly helps improve the scalability of the system by adding

more processors.

We argue that our policy should improve the perfor-

mance for highly multithreaded scientific applications. To

test our hypothesis we used a 4-way Itanium2 SMP run-

ning the 2.6.9 Linux kernel. We have extensively leveraged

the Linux 2.6 kernel’s O(1) scheduler and Futex (Fast User-

space muTEX) mechanism in order to implement our ideas.

The O(1) scheduler, which takes constant time irrespective

of the number of threads and the Futex mechanism, which

implements the OS support for user-level locks, provide

significant performance/scalability improvements to multi-

threaded applications over the earlier 2.4 kernel. Our ex-

perimental suite consists of seven hand-coded microbench-

marks and nine kernels/applications from the SPLASH2

suite. The microbenchmarks show a 10-90% performance

improvement in cpu cycles, L2 miss ratios and bus requests

for applications that operate on significant amounts of data

inside the critical section protected by locks. The SPLASH2

benchmarks also show significant performance improve-

ments for L2 miss ratios and bus requests for most appli-

cations in the suite.

The remainder of the paper is organized as follows: Sec-

tion 2 presents details on scheduling and synchronization

techniques under and presents some details on the Linux

Kernel scheduler. Section 3 presents the experimental setup

and Section 4 presents the results of our evaluation. Section

5 summarizes related work, Section 6 presents our conclu-

sions and suggests some future work.

2 Scheduling and Synchronization tech-

niques

In this section, we first present the conceptual overview

of our new scheduling policy. Then we provide a brief ex-

planation of the Linux 2.6.9 kernel scheduler and the futex

mechanism. Finally, we present the modifications we made

to the linux kernel to implement our policy.

2.1 Conceptual Overview

Our OS level synchronization technique relies heavily on

the kernel thread scheduler and requires the scheduler to be

aware of user-level locks. In other words, the kernel sched-

uler must be able to identify the thread that currently holds

a contended lock. Using this information, the kernel can

pin the thread and its execution state to a single cache for

reasonable amounts of time. The locality of the critical sec-

tion data can be exploited by moving threads that require

the same lock to the processor that is executing the thread

that currently holds the lock. In addition to this, we allow

the scheduler to move threads that do not require the lock

to other processors in the system, reducing the workload on

the processor whose cache holds the lock.

There are number of advantages in doing this. For ex-

ample, when a lock is released and the thread that blocked

on the lock is awakened, it directly uses the data in its lo-

cal cache rather than doing remote bus requests to fetch

the data. This is quite important given the fact that current

micro-processors are much faster than the memory subsys-

tem and the system bus, and hence have to use the data in

their caches very efficiently. Additionally this translates to

reduction in the number of requests in the bus and hence

improvement in the scalability of SMP systems. Further

the thread is able to perform the computation in the criti-

cal section faster and release the lock quicker since the data

is already present in its local cache. All these advantages

should speed up applications that have heavy synchroniza-

tion overhead.

2.2 Linux 2.6.Kernel Scheduler and Synchroniza-
tion support

The Linux kernel does not differentiate between pro-

cesses and threads as most operating systems do. Any ref-

erence to tasks or threads refer to the same entity since we

are primarily interested in multithreaded applications.

2.2.1 Scheduling

The Linux 2.6 kernel scheduler uses a O(1) algorithm i.e.

the scheduler is guaranteed to schedule tasks within a cer-

tain constant amount of time regardless of the number of

tasks currently on the system. This is largely made possible

by having separate run-queues for each physical processor

in the system. The distributed run queues also enables the

scheduler to provide better scheduling support for SMPs.

First, the load on each processor is estimated by multiply-

ing the number of active tasks on the run queue by a scaling

factor. This metric enables the scheduler to handle load im-

balance in the system. Further, this is also used to enforce

better “SMP affinity” i.e. tasks stay on the same run queue

(or processor) for longer so that they utilize the caches bet-

ter.

These techniques provide significant improvement over

the previous 2.4 kernel where threads randomly migrated

across processors resulting in poor performance. In addition

to these improvements, we propose to migrate tasks when

they (un)block for synchronization events since they incur

heavy serialization overheads.

The Linux 2.6 kernel scheduler uses a variety of tech-

niques to schedule/migrate threads depending on the system

state. One way that threads are scheduled is by the Migra-

tion thread which is a per CPU high priority kernel thread.

When the load is unbalanced, the Migration Thread will mi-

grate threads from a processor that is carrying a heavy load

to a processor or processors that currently has light load.

The migration thread is activated based on a timer interrupt

to perform active load balancing or when requested by other

parts of the kernel. Another way that scheduling is done is

on a thread by thread basis. When each thread is unblocked

or is being scheduled to run, the scheduler will check to

see if it can run on its currently assigned processor, or if it

needs to be migrated to another processor to keep the load

balanced across all processors.

2.2.2 Synchronization

Since Linux 2.5.x kernel series, user level synchronization

is supported in the OS by using the kernel Futex (Fast

Userspace muTEX) mechanism. Futexes are light-weight,

and can be used as building blocks for implementing fast

user-level locks and semaphores in system libraries. For

example, the Linux 2.6 POSIX thread library also called as

NPTL (Native Posix Thread Library) uses futexes to imple-

ment pthread mutex calls.

Operations on futexes start in the user-space but enter

the kernel when necessary using the the sys futex sys-

tem call. The Linux man pages defines sys futex() as:

“...sys futex() system call provides a method for a pro-

gram to wait for a value at a given address to change, and a

method to wake up anyone waiting on a particular address”.

Migration
Thread

Current
Thread

Is Load
Balanced?

Find Threads
On Overloaded

Processor(s) Is
cpu_lock

set?

Is thread
on proper

cpu?

Move
thread to

proper cpu

Schedule
No

Yes
No

Yes

No Yes

Figure 1. Migration flow within the Scheduler

In short the kernel futex mechanism works as follows:

• When a futex is free, a user-level thread can acquire
the lock, but it does not need to enter the kernel to do

so. Similarly, the thread need not enter the kernel for

releasing an un-contended lock.

• When a futex is not free (lock is contended), a

thread wishing to acquire the lock will enter the ker-

nel. It is then queued along with all other previ-

ously blocked threads using the sys futex(...,

FUTEX WAIT, ...) system call.

• When a thread releases a lock that is contended,
it will enter the kernel and wake up one or more

blocked threads on the corresponding futex using the

sys futex(..., FUTEX WAKE, ...) system

call.

For threads sharing the same address space, a futex is

identified using the virtual address of the lock in the user-

space. This address is used to map into a kernel data struc-

ture that implements a hashed bucket of lock addresses. The

mechanism also provides support for inter-process commu-

nication, but the details of its working are beyond the scope

of this paper.

2.3 Linux 2.6.9 Kernel Modifications

2.3.1 FAST: Futex Aware Scheduling Technique

The goal behind our modifications is to create a link be-

tween the kernel futex mechanism and the scheduler, in

other words, to make the scheduler “futex aware”. This

additional knowledge enables the scheduler to make intel-

ligent decisions for threads that are contending for locks.

To do this, we modify three parts of the kernel: the thread

information table, the futex implementation, and the sched-

uler.

Thread Information Table is unique to each thread. This

table has an entry called cpu to represent the physical

CPU on which the thread is currently on. We added a

new entry to the table called cpu lock to represent

the physical CPU (lock hot processor) the thread will

need to run on when it acquires a lock. Upon the cre-

ation of a new thread, this field is initialized to value

larger than the number of processors in the system

called CPU LOCK INIT. In our case, for a four-way

SMP any value larger than four should work.

Futex Mechanism We added our modifications to the fu-

tex mechanism in the futex wake() function which

in turn gets invoked by the sys futex(...,

FUTEX WAKE, ...) system call. When a thread

is releasing a contended futex (releasing thread), it

wakes up one of the threads already blocked (acquir-

ing thread) on the futex. Here, we set the cpu lock

for the acquiring thread to that of the cpu of the re-

leasing thread. As the releasing thread is no longer

waiting for the lock, we set its cpu lock value to

CPU LOCK INIT.

Scheduler The scheduler checks the cpu lock when mi-

grating a thread or when trying to activate a blocked

thread. If the thread is being migrated due to

reasons not related to its synchronization activities

(cpu lock=CPU LOCK INIT), then the scheduler

performs its operations as usual. In other cases, the

scheduler’s decisions is modified based on the follow-

ing heuristics:

• If a thread is already running on the processor
identified by the cpu lock value, the thread is

not migrated away from that processor.

• If a thread has a cpu lock value defined (other

than CPU LOCK INIT), migrate this thread to

the processor identified by cpu lock.

• In any case, if there is a problem with load bal-

ancing, the default scheduler thread migration

mechanisms have higher priority over our policy.

Figure 1 shows a brief flow of control within the linux

kernel scheduler. The shaded boxes represent additional

decisions introduced by our scheduling policy. The kernel

modifications we propose are non-intrusive to the normal

operation of the scheduler as long as threads do not block

for synchronization events such as contended locks. Ad-

ditionally since only one thread is awakened at a time, the

“lock hot” processor is not running heavy loads. Finally we

also do not interfere with which of the blocked threads is

awakened but we only change the decision of where it is

awakened. The scheduler native support for load balancing

ensures that the processors do not become unbalanced over

time. Further, this also ensures that multiple locks do not

get assigned to the same processor.

In terms of source code we have added 20-30 lines to-

tally to both the scheduler and the futex mechanism. How-

ever since scheduler code is executed at high frequency the

Parameter Details

Server name HP Integrity rx4640-8

Server

SMP Type 4-way Intel R⇤Itanium R⇤2
Processor Speed 1.5 GHz

L1I cache size (line size) 16Kb (64 Bytes)

L1D cache size (line size) 16Kb (64 Bytes)

L2 cache size (line size) 256KB (128 Bytes)

L3 cache size (line size) 4MB (128 Bytes)

Memory size 8 GB

Bus bandwidth 12.8 GB/s

OS kernel (Distribution) Linux 2.6.9 kernel (Red-

hat Linux Enterprise)

Table 1. Baseline system parameters

number of lines of source code may not represent the ac-

tual overheads. Further, preliminary analysis shows that

we have not modified the O(1) scheduling guarantees of the

scheduler. Theses issues are being further analyzed as part

of the future work.

3 Experimental Methodology

This section gives details on the experimental methodol-

ogy used in this study. The baseline system used for all the

experiments is presented in Table 1. The rest of this section

is organized as follows: first, we explain the performance

monitoring tools and metrics we used on the Linux IA64

environment. Next, we provide details on the microbench-

marks and applications that were used to evaluate the effect

of our modifications.

3.1 Performance Monitoring tools and Metrics

The Pfmon utility [1] is a performance monitoring tool

used to collect counts or samples from unmodified binaries

running on IA64 processors (Itanium, Itanium2). It can also

be used to profile an entire system. It uses the IA-64 hard-

ware performance counters and the Linux kernel perfmon

interface to monitor real applications. It makes full use of

the libpfm library to help in programming the IA-64 Perfor-

mance Monitoring Unit (PMU) [2].

For our experiments, we monitored the following

hardware events: CPU cycles (CPU CYCLES), num-

ber of bus requests (BUS ALL SELF), L2 cache misses

(L2 MISSES), L2 cache references (L2 REFERENCES),

L3 cache misses (L3 MISSES), L3 cache references

(L3 REFERENCES). The L2 and L3 miss ratios were ob-

tained from the ratio of the respective misses and reference

numbers. Further each thread was monitored individually

and the metrics we aggregated over the values of all the

threads. Finally, we monitored the above events for both

user and kernel space.

3.2 Microbenchmarks and Benchmark Suites

3.2.1 Microbenchmarks

We developed seven microbenchmarks that specifically test

synchronization mechanisms and implemented them in C

language using Pthreads (POSIX Threads Library). The

seven microbenchmarks differ on a wide range of charac-

teristics including the number of locks, the access patterns

of shared data structures with the critical section, the com-

plexity of the critical section code and finally optimizations

that try to limit false sharing.

The first four microbenchmarks all use one lock to pro-

tect the critical section and the last three involve multiple

locks. All the threads execute the critical section in a loop,

with iterations ranging from 200,000 to 16 million. Further,

all the microbenchmarks are padded appropriately to take

care of false sharing. All microbenchmarks perform sig-

nificant amounts of random work outside the critical sec-

tion code. This is to ensure fairness in acquiring the lock

and performing critical section operations. In other words

threads dont iteratively just acquire/release locks but do per-

form some work in between successive locking operations.

All the microbenchmarks were designed using a method-

ology similar to [13] and [11]. Four of the microbench-

marks (Single counter, Multiple counter, Doubly linked list,

Producer Consumer) were previously mentioned in [8] and

[13]. We explain each of these microbenchmarks briefly.

Single Counter(single ctr) consists of a counter (fits in a

cache line) protected by a single lock and all threads

increment a single counter in a loop.

Multiple Counter(multiple ctr) consists of an array of

counters protected by a single lock and each thread in-

crements a different counter (fits in a cache line) in the

array.

Doubly Linked list(doubly list) consists of a doubly

linked list where threads dequeue elements from the

head and enqueues them on to the tail of the list.

The enqueue and dequeue operations are performed

independent of each other with separate lock acquire

and release operations. The doubly linked list is

protected by a single lock.

Producer Consumer(prod cons) consists of a shared

FIFO (bounded) array protected by a single lock that

is initially empty. Half the threads produce items into

the FIFO that are consumed by the other half threads.

Producers have to wait for free elements in the FIFO

Benchmark Problem size

Cholesky d750.o

FFT 224 points

LU-Cont (Contiguous) 2,048x2,048 matrices

LU-Noncont (Noncontiguous) 2,048x2,048 matrices

Radix 224 integers, radix 1024

Barnes 92,000 bodies

FMM 32,000 particles

Water-nsq (Nsquared) 9,261 molecules

Water-spa (Spatial) 9,261 molecules

Table 2. SPLASH2 problem sizes

whereas consumers have to wait for data to consume

before iterating the critical section code.

Affinity Counter(affinity) consists of two locks that pro-

tect two counters. During the first phase of each itera-

tion, each of the locks protects one of the counters and

during the second phase each of the locks protect the

other counter. A barrier is required between the two

phase to ensure atomicity.

Multiple Counters Multiple Locks(mlt ctr mlt lock) is

similar to the multiple counter microbenchmark, but

there are multiple locks protecting different segments

of the counter array. The threads dynamically choose

the lock to acquire and hence the counter to update

depending on its thread id.

Multiple FIFO(multiple fifo) is similar to producer con-

sumer microbenchmark, but there are multiple

locks each protecting a separate FIFO. Each pro-

ducer/consumer pair is dynamically assigned to a

FIFO depending on its thread id. Each thread ac-

quires/releases only the lock corresponding to the

queue it is assigned irrespective of whether it is pro-

ducing or consuming data.

3.2.2 SPLASH2 Benchmark Suite

SPLASH2 (Stanford Parallel Applications for SharedMem-

ory) [18] consists of five kernels and eight applications

to test various characteristics of shared memory machines.

SPLASH2 codes utilize the Argonne National Laboratories

(ANL) parallel macros (PARMACS) for parallel constructs.

We used the Pthreads implementation of PARMACS by [3].

We used nine of the SPLASH2 kernels/applications with the

problem sizes listed in Table 2. Our problem sizes is larger

than the default problem sizes listed as part of SPLASH2

documentation. This was necessary since the base problem

sizes supported only 64 processors/threads.

-20

-10

0

10

20

30

40

50

60

70

80

affinity single_ctr multiple_ctr doubly_list prod_cons mlt_ctr_mlt_lock multiple_fifo

Benchmarks

%
 P

e
rf

o
rm

a
n

ce
 I

m
p

ro
ve

m
e

n
t

4 threads 8 threads 16 threads 32 threads 64 threads 128 threads

Figure 2. Microbenchmarks: % Improvement

in number of CPU cycles for modified kernel

over unmodified kernel

4 Results

4.1 Microbenchmarks results

Each of the application/thread combination was run five

times and the results presented in these graphs represent

the data averaged over all the runs. For each benchmark,

we measure the percent improvement for 4, 8, 16, 32,

64, and 128 threads. These values were obtained using

pfmon with metrics such as CPU CYCLES, L2 MISSES,

L2 REFERENCES, L3 MISSES, L3 REFERENCES,

BUS ALL SELF and were calculated using the formula:

(((Base kernel value � Modified kernel value) ⇥
100)/Base kernel value).
Figure 2 shows the percent improvement in cpu cycles

for the seven microbenchmarks in the modified kernel over

the unmodified kernel. For example, in the case of 128

threads, the affinity shows an improvement of 50.9% im-

plying that the modified kernel ran this benchmark in half

the number of cpu cycles as the unmodified kernel. The

best improvements were obtained for the 4, 8, and 16-thread

cases, with peak improvements as high as 99%. Over-

all, an improvement of 18-75% is observed for five of our

seven microbenchmarks (affinity, single ctr, multiple ctr,

doubly list, mlt ctr mlt lock) for the range of threads un-

der consideration. The 4-thread case for prod cons, as well

as the 32, 64, and 128-thread cases for multiple fifo, do not

show an improvement. This is primarily due to the schedul-

ing overhead being higher than the synchronization over-

head for these cases.

Table 3. Microbenchmarks: % Improvement

in L2 and L3 miss ratios for modified kernel

over unmodified kernel

Micro Threads

Benchmark 4 8 16 32 64 128

Affinity 4.4 54.4 18.8 29.4 30.5 27.9

Counter 94.3 98.6 98.9 98.6 97.7 83.5

Single 34.8 11.4 17.5 13.8 10.9 10.5

Counter -0.6 0.1 0.4 -4.3 -5.1 -1.2

Multiple 36.4 14.9 16.9 15.2 11.7 9.1

Counter -1.3 0.2 1.2 -3.9 -4.6 -3.0

Doubly 42.0 29.8 31.7 21.2 22.7 15.2

Linked list -2.3 0.4 7.4 2.0 -0.9 -4.4

Producer 40.2 20.5 10.8 10.2 9.5 8.3

Consumer -0.9 0.5 1.9 -0.6 -4.9 -1.5

Mlt. Ctr 59.4 30.5 34.0 36.8 35.4 36.7

Mlt. Lock -0.1 4.9 16.4 10.0 2.4 0.1

Multiple 34.0 18.8 9.0 7.9 6.0 6.0

FIFO -0.8 0.5 2.9 -2.8 -4.3 -2.0

The percent improvement in the L2 and L3 miss ratios is

listed in Table 3. For each benchmark, the first row repre-

sents the L2 miss ratios and the second row represents the

L3 miss ratios. The boldface numbers represent the best

case percentage improvements for the L2 and L3 miss ra-

tios. All microbenchmarks show an improvement of 6-94%

for the L2 miss ratio. This improvement is a key artifact of

our modification, translating to a reduction in the number of

bus requests, cpu cycles, and L3 cache references.

However, it should be noted that the L3 miss ratios do

not show these same improvements, with a small negative

improvement in many cases. The lower L2 miss ratio gener-

ates a lesser number of L3 references in the modified kernel

compared to the unmodified kernel. Cold-start misses will

still occur, and the combination of these L3 cache misses

and the lower number of L3 references result in a higher L3

miss ratio for the modified kernel in many cases.

Figure 3 shows the percentage improvement in bus re-

quests for the microbenchmarks. As in the cpu cycles case,

the 4, 8, and 16-thread cases performed best, with improve-

ments ranging from 10-99%. In general, significant per-

formance improvements were observed until 16 threads af-

ter which the performance improvements started decreas-

ing due to system load and other overheads. Again, the 32,

64, and 128-thread cases of multiple fifo did not show im-

provement, as the overhead from scheduling this program

will outweigh the benefit created from the synchronization

improvement.

-20

0

20

40

60

80

100

affinity single_ctr multiple_ctr doubly_list prod_cons mlt_ctr_mlt_lock multiple_fifo

Benchmarks

%
 P

e
rf

o
rm

a
n

ce
 I

m
p

ro
ve

m
e

n
t

4 threads 8 threads 16 threads 32 threads 64 threads 128 threads

Figure 3. Microbenchmarks: % Improvement

in number of requests on the bus

The affinity microbenchmark performs best across all

metrics, as it is specifically designed to create explicit affin-

ity between the locks and the data accessed within the crit-

ical section. In the unmodified kernel, since locks and crit-

ical section data are not pinned down to a particular cache,

the cache lines get transferred across processors more fre-

quently.

4.2 SPLASH2 Results

Table 4 shows the improvements in the L2 miss ratios

for SPLASH2 codes. We see improvements ranging from

a negative 5% to a positive improvement of 33%, with

most cases showing positive improvements. As in the case

of the microbencharks, the boldface numbers represent the

best case percentage improvements for L2 miss ratios. Fig-

ure 4 shows the percentage improvements for number of

bus requests. In general, the results show a fairly consis-

tent trend of providing better results for a higher number

of threads with increase in available parallelism. Figure 5

shows the performance improvements for cpu cycles. The

performance improvements range from a negative 39% to a

positive improvement of 10%, with most applications hav-

ing little or no performance improvements in terms of cpu

cycles.

We are currently investigating why some SPLASH2 ap-

plications do not show improvements as well as others, and

why many do not perform in a consistent basis. Specifically,

we are trying to determine why the improvements in L2/L3

miss ratios and the number bus requests have not translated

to corresponding improvements in cpu cycles.

Table 4. SPLASH2: % improvement in L2miss

ratios for modified kernel over unmodified

kernel

Threads

Benchmark 4 8 16 32 64 128

Barnes 2.1 4.7 6.6 8.5 16.4 21.7

Cholesky 0.8 0.5 0.7 2.4 0.8 1.0

FFT 0.0 0.5 0.7 0.6 3.9 3.8

FMM -0.7 0.4 0.3 1.8 -0.7 2.7

LU-Cont -5.6 0.2 1.3 3.5 4.4 3.3

LU-Noncont 33.5 17.3 9.8 9.6 8.1 5.2

Radix 1.1 6.3 14.5 21.5 20.8 21.6

Water-Nsq 0.4 0.0 -0.2 -0.4 0.5 -0.7

Water-Spa 1.3 -1.2 -1.1 5.5 5.3 3.4

If benchmarks do not spend a high percentage of time

performing synchronization, then the scheduling overhead

introduced by our modification is will not offset by the ap-

plication’s synchronization overhead. We also conjecture

that SPLASH2 is tuned for 32 bytes cache block size in-

stead of the processors 128 byte block size. Further on the

Itanium processors pointers are 64-bit values. So if an ap-

plication mixes pointers and scalar data types inconsistently

without cache line sizes in mind then the application takes

a significant hit. Such issues may be even more important

with our modifications. We intend to investigate these is-

sues more thoroughly as part of future work.

5 Related Work

A variety of hardware and software techniques have

been proposed for supporting efficient synchronization.

These techniques allow efficient synchronization to be im-

plemented in user-level thread libraries [12], parallelizing

compilers, OS runtime [4] [5], atomic instructions such

as Test&set[9], memory consistency models [6], hardware

synchronization protocols [10], and cache coherency pro-

tocols [15] etc. We direct interested readers to the above

references for more information on the implementations.

Evaluation of synchronization mechanisms have also been

studied both by simulation [10] and on real systems [11],

[12]. We use the methodology presented in [11] and some

of the microbenchmarks used in this paper have previously

been used by [13] and [8].

The idea of cache affinity scheduling has been previously

explored in [7], [17], [16] and [14]. These proposals have

been evaluated using analytical models, simulations and on

real systems using both synthetic and real workloads. Simi-

-85

-65

-45

-25

-5

15

35

55

Barnes Cholesky FFT FMM LU_cont LU_noncont Radix Water_nsq Water_spa

Benchmarks

%
 P

e
rf

o
rm

a
n

ce
 I

m
p

ro
ve

m
e

n
t

4 threads 8 threads 16 threads 32 threads 64 threads 128 threads

Figure 4. Splash2: % Improvement in num-

ber of bus requests for modified kernel over

unmodified kernel

-50

-40

-30

-20

-10

0

10

20

Barnes Cholesky FFT FMM LU_cont LU_noncont Radix Water_nsq Water_spa

Benchmarks

%
 P

e
rf

o
rm

a
n

ce
 I

m
p

ro
ve

m
e

n
t

4 threads 8 threads 16 threads 32 threads 64 threads 128 threads

Figure 5. SPLASH2: % Improvement in num-

ber of CPU cycles for modified kernel over

unmodified kernel

lar to the previous papers we have tried to leverage the exe-

cution state that is already present in caches to speedup our

applications. However unlike the previous approaches we

primarily use synchronization events to guide our heuristic.

6 Conclusions and Future Work

In this paper, we exploit the locality of the critical sec-

tion data by enforcing an affinity between locks and the pro-

cessor. Using microbenchmarks, we show the potential for

large performance gains (up to 90%). We also show that

when an application is properly written with cache line size

in mind, we can further decrease the L2 miss ratio, and in

turn lower the L3 miss ratio, the number of bus requests,

and the cpu cycles for an application. Our scheduler helps

improve the performance for highly multithreaded scientific

applications.

We are currently working on an online mechanisms that

can identify circumstances under which our approach works

best and then dynamically switches the scheduler to use our

policy only for those cases. We are continuing our efforts

to optimize the scheduler by performing finer-grain traces

of the scheduler in order to fine-tune it and limit the over-

head introduced by our modifications. We also plan to test

our scheduling techniques on multi-core SMP systems, as

we hypothesize that our modifications could allow for even

larger improvements on such a system. Finally, we plan

to extend our testing to a wide variety of applications and

testing suites, so we can gain a better understanding of the

opportunities and limitations of our approach.

Acknowledgments

This material is based in part upon work supported by the

Defense Advanced Research Projects Agency (DARPA) un-

der its Contract No. NBCH3039003. The Itanium2 servers

were provided by a grant from HP with additional support

from NSF (CNS0447671, IIS0515674).

References

[1] Perfmon project. http://www.hpl.hp.com/research/linux/

perfmon/pfmon.php4.

[2] Intel R�Itanium R�2 Processor Reference Man-

ual for Software Development and Optimization.

http://www.intel.com/design/itanium2/manuals/251110.htm,

May 2003.

[3] E. Artiaga, N. Navarro, X. Martorell, and Y. Becerra. PAR-

MACS Macros for Shared-Memory Multiprocessor Envi-

ronments. Technical Report UPC-DAC-1997-07, Depart-

ment of Computer Architecture, UPC, Jan. 1997.

[4] U. Drepper. Futexes are tricky. http://people.redhat.com/

drepper/futex.pdf.

[5] H. Franke, R. Russell, and M. Kirkwood. Fuss, Futexes and

Furwocks: Fast Userlevel Locking. In Proceedings of the

Ottawa Linux Symposium, Ottawa, Canada, 2002.
[6] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,

A. Gupta, and J. Hennessy. Memory consistency and event

ordering in scalable shared-memory multiprocessors. In

ISCA ’90: Proceedings of the 17th annual international

symposium on Computer Architecture, pages 15–26, New

York, NY, USA, 1990. ACM Press.
[7] A. Gupta, A. Tucker, and S. Urushibara. The impact of oper-

ating system scheduling policies and synchronization meth-

ods of performance of parallel applications. In SIGMET-

RICS ’91: Proceedings of the 1991 ACM SIGMETRICS con-

ference on Measurement and modeling of computer systems,

pages 120–132, New York, NY, USA, 1991. ACM Press.
[8] M. Herlihy and J. E. B. Moss. Transactional Memory: Ar-

chitectural support for lock-free data structure. In Proceed-

ings of the 20th ISCA, pages 289–300. ACM Press, 1993.
[9] I. B. M. I. Inc. IBM System/360 Principles of Operation.

USA, May 1970.
[10] A. Kagi, D. Burger, and J. R. Goodman. Efficient Synchro-

nization: Let Them Eat QOLB. In Proceedings of the 24th

Annual International Symposium on Computer Architecture

(ISCA), pages 170–180, Denver, Colorado, June 2–4, 1997.

ACM SIGARCH and IEEE Computer Society TCCA.
[11] S. Kumar, D. Jiang, R. Chandra, and J. P. Singh. Evaluat-

ing Synchronization on Shared Address Space Multiproces-

sors: Methodology and Performance. SIGMETRICS Per-

form. Eval. Rev., 27(1):23–34, 1999.
[12] J. M. Mellor-Crummey and M. L. Scott. Algorithms for

Scalable Synchronization on Shared-memory Multiproces-

sors. ACM Transactions Computing Systems, 9(1):21–65,

1991.
[13] R. Rajwar and J. Goodman. Transactional Lock-free Exe-

cution of Lock-based Programs. In Proceedings of the 10th

ASPLOS, pages 5–17. ACM Press, 2002.
[14] M. S. Squiillante and E. D. Lazowska. Using processor-

cache affinity information in shared-memory multiprocessor

scheduling. IEEE Trans. Parallel Distrib. Syst., 4(2):131–

143, 1993.
[15] P. Stenstrom, M. Brorsson, and L. Sandberg. An adaptive

cache coherence protocol optimized for migratory sharing.

In ISCA ’93: Proceedings of the 20th annual international

symposium on Computer architecture, pages 109–118, New

York, NY, USA, 1993. ACM Press.
[16] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the perfor-

mance of cache-affinity scheduling in shared-memory multi-

processors. Journal of Parallel and Distributed Computing,

24(2):139–151, 1995.
[17] R. Vaswani and J. Zahorjan. The implications of cache affin-

ity on processor scheduling for multiprogrammed, shared

memory multiprocessors. In SOSP ’91: Proceedings of

the thirteenth ACM symposium on Operating systems princi-

ples, pages 26–40, New York, NY, USA, 1991. ACM Press.
[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.

The SPLASH-2 Programs: Characterization and Method-

ological Considerations. In Proceedings of the 22th Interna-

tional Symposium on Computer Architecture, pages 24–36,

Santa Margherita Ligure, Italy, 1995.

