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NEAR-DATA PROCESSING: INSIGHTS
FROM A MICRO-46 WORKSHOP
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AFTER A DECADE-LONG DORMANCY, INTEREST IN NEAR-DATA PROCESSING (NDP) HAS

SPIKED. A WORKSHOP ON NDP WAS ORGANIZED AT MICRO-46 AND WAS WELL

ATTENDED. GIVEN THE INTEREST, THE ORGANIZERS AND KEYNOTE SPEAKERS HAVE

ATTEMPTED TO CAPTURE THE KEY INSIGHTS FROM THE WORKSHOP FOR WIDER

DISSEMINATION. THIS ARTICLE DESCRIBES WHY NDP IS COMPELLING TODAY AND

IDENTIFIES UPCOMING CHALLENGES IN REALIZING ITS POTENTIAL.

......Processing in large-scale systems
is shifting from the traditional computing-
centric model successfully used for many dec-
ades into one that is more data centric. This
transition is driven by the evolving nature of
computing, which is no longer dominated by
the execution of arithmetic and logic calcula-
tions but instead by the handling of large
data volume and the cost of moving data to
the locations where computations are per-
formed. The computing-centric model where
data lives on disk, or even tape, and moves as
needed to a central computing engine across
a deep storage hierarchy is sufficient when
computational aspects dominate data move-
ment aspects. In contrast, in the data-centric
model, data lives in different storage levels
within the hierarchy, with processing engines
surrounding the data and operating on such
data without moving it across the system.

The trend toward big data is leading to
changes in the computing paradigm, and in
particular to the notion of moving computa-
tion to data, in what we call the near-data
processing (NDP) approach. Data movement
impacts performance, power efficiency, and
reliability, three fundamental attributes of a

system. NDP seeks to minimize data move-
ment by computing at the most appropriate
location in the hierarchy, considering the
location of the data and the information that
needs to be extracted from that data. Thus,
in NDP, computation can be performed right
at the data’s home, either in caches, main
memory, or persistent storage. This is in con-
trast to the movement of data toward a CPU
independent of where it resides, as is done
traditionally. Examples of NDP already exist
in systems that execute computations close to
the disk, filtering or preprocessing the data
streaming from the disks so that a minimal
number of items are transferred for process-
ing at other parts of the system. Conceptu-
ally, the same principle can be applied at
other levels of a system’s memory and storage
hierarchy by placing computing resources
close to where data is located, and restructur-
ing applications to exploit the resulting dis-
tributed computing infrastructure.

At the MICRO-46 conference, a work-
shop was held to bring together experts from
academia and industry, who presented recent
advances in the development of large systems
employing NDP principles (www.cs.utah.
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edu/wondp). This first workshop in this
emerging area of computer architecture was
very successful, with more than 60 people in
attendance. The workshop program con-
sisted of four keynotes and six presentations
based on submitted papers. This article aims
to convey the insights developed at this work-
shop to a wider audience.

Resurgence of interest in NDP
NDP is not a new concept; intelligent

controllers near memory, I/O, and disk have
been considered for several decades, most
notably as processing-in-memory (PIM).
Multiple groups of researchers in the 1990s
built PIM prototypes and demonstrated the
potential for significantly improved perform-
ance in many application classes.1-4

Most PIM projects were based on a single
PIM chip having a number of DRAM or
embedded DRAM (eDRAM) arrays and a
few simple processing cores located near these
arrays. Such PIM chips were connected to a
traditional host processor with a custom
interconnect. A runtime system was responsi-
ble for spawning and migrating tasks so that
the computation was performed in close
proximity to the data handled by that task.

Although PIM research yielded a num-
ber of promising results, widespread com-
mercial adoption remained elusive. This
could be attributed to several factors. Incor-
porating DRAM and logic on a single chip
meant that DRAM was being designed with
a costlier logic process, or that logic was
being designed with a process optimized for
DRAM. The memory industry is extremely
cost sensitive, and the inevitable increase in
cost per bit implied by PIM did not help.
Moreover, exploitation of PIM required
programmers to grapple with a new pro-
gramming model.

After a dormant decade, NDP research is
currently trending upward. In its most recent
reincarnation, NDP has assumed a scope
broader than that captured by the PIM
research of the 1990s. NDP is now being
applied at many levels of the memory hier-
archy, from caches to DRAM to nonvolatile
storage-class memory to hard disk drives.5-9

This resurgence is motivated by new technol-
ogies such as 3D stacking, big-data workloads
with high degrees of parallelism, program-
ming models for distributed big-data applica-
tions, accelerator use in specific domains,
and the need to overcome the diminished
benefits from technology scaling through new

..............................................................................................................................................................................................

Recent Work in Near-Data Processing
This sidebar lists some recent products and papers in NDP as evi-

dence of the resurgence of interest in this area, and provides an initial
reading list for interested researchers.

Recent companies and products in the NDP space include Netezza,
Venray Technology, EMU Technology, Micron (the Hybrid Memory
Cube and Automata Processor), Convey Computer, DSSD, Adapteva,
and Oracle (the Exadata).

The following six papers were presented at the Workshop on
Near-Data Processing (http://www.cs.utah.edu/wondp):

" S. Kumar et al., “SQRL: Hardware Accelerator for Collecting Soft-
ware Data Structures”

" G. Loh et al., “A Processing in Memory Taxonomy and a Case for
Studying Fixed-Function PIM”

" B. Cho et al., “XSD: Accelerating MapReduce by Harnessing GPU
inside SSD”

" A. Anghel et al., “Spatio-Temporal Locality Characterization”
" H. Tseng and D. Tullsen, “Data-Triggered Multithreading for

Near-Data Processing”
" M. Chu et al., “High-Level Programming Model Abstractions for

Processing in Memory”

Other recent papers on NDP include the following:

" A. De et al., “Minerva: Accelerating Data Analysis in Next-Gener-
ation SSDs,” Proc. IEEE 21st Ann. Int’l Symp. Field-Programmable
Custom Computing Machines, 2013, pp. 9-16.

" J. Chang et al., “A Limits Study of Benefits from Nanostore-Based
Future Data-Centric System Architectures,” Proc. 9th Conf. Com-
puting Frontiers, 2012, pp. 33-42.

" S. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked
MemoryþLogic Devices on MapReduce Workloads,” Proc. Int’l
Symp. Performance Analysis of Systems and Software (ISPASS),
2014.

" Q. Guo et al., “A Resistive TCAM Accelerator for Data-Intensive
Computing,” Proc. 44th Ann. IEEE/ACM Int’l Symp. Microarchitec-
ture, 2011, pp. 339-350.

" Q. Guo et al., “AC-DIMM: Associative Computing with STT-
MRAM,” Proc. 40th Ann. Int’l Symp. Computer Architecture,
2013, pp. 189-200.

.............................................................

JULY/AUGUST 2014 37



..............................................................................................................................................................................................

Everything Old is New Again: How Moore’s Law Continues to Drive the Future
Processing-in-memory (PIM) and processing-near-memory have

been rich areas of research for decades, but are now poised to enter

the mainstream. With the end of Dennard scaling, performance

improvements cannot depend on increases in the transistor’s switch-

ing frequency; they need fundamental changes in computer architec-

ture. The multicore paradigm represents one such change. The

inability to scale clock frequency forced the industry to exploit the con-

tinued availability of transistors through the integration of multiple

cores, each with a simpler architecture, to get double the performance

at constant power with each technology generation. However, even

this change is running out of steam. Moore’s law would have allowed

us to have 64 to 128 cores on the chip by now, but commercial chips

have a more modest number of cores. Some of the reasons for this are

" the complexity of scaling cache-coherence mechanisms and

shared memory architectures, in general;
" the challenge of programming in parallel and, hence, the limited

consumer demand for parallel applications at the low-end;
" the attractive cost of smaller chips with a more modest number of

cores; and
" the opportunity provided by the available real estate to integrate speci-

alized architectures for high-volume functions instead of more cores.1

At the same time, Moore’s law itself is slowing as we approach

the 10-nm technology node, signaling the need for computer architec-

tures beyond the dominant von Neumann model. The demand for

increased capability on a chip will continue unabated, but at a reason-

able price, especially with the new need to process massive amounts

of data with high inherent parallelism. The window opens for creative

computing architectures to meet this demand economically. Freed

from the traditional von Neumann architecture with its high energy

cost of moving data, processing data much closer to memory or stor-

age, or even in memory or storage, can now realize its potential.
Communication between the processor and its various subsystems

was clearly identified as the bottleneck in the 1990s, and PIM research

emerged to address that problem, wrestling with the limits of tradi-

tional approaches such as instruction level parallelism, which have

today fully played out. Indeed, McKee and Wulf identified the classic

memory wall in 1995,2 pointing out that as processor clock rates

increase, the CPU will forever wait on memory, performing little or no

useful work. The low utilization of modern CPUs demonstrates the cor-

rectness of this prediction, despite a flattening of clock rates in 2003.

Today, the key problems with memory and storage subsystems are

" limited capabilities across relatively weak interfaces (memory or I/O),

which provide insufficient bandwidth for data movement; and
" lack of concurrency of access across those interfaces, which

impedes overall system throughput.

DDR-style memory interfaces are largely optimized for cost rather

than for addressing these two problems. The traditional RAS/CAS

architecture provides little opportunity to facilitate parallel access;
memory banks typically exist in slave interfaces to improve the latency
of access but not overall system throughput. Additionally, because of
the bus architecture, increasing the number of DIMMs per memory
channel typically results in a decrease in interface speed, forcing a
tradeoff between capacity and performance. As an example, Micron’s
Hybrid Memory Cube (HMC) architecture addresses both of these chal-
lenges by moving to an abstracted serialized network interface and
increasing the overall number of banks (or vaults in HMC parlance)
available to the system. Storage systems suffer from similar problems.

Again, using DRAM as an example, there is typically a reduction in
available bandwidth of six orders of magnitude between the sense ampli-
fiers and the CPU edge. In addition, the cost of access in terms of energy
increases from hundreds of femtojoules to tens of picojoules over a span
of the same distance. When combined with the failure of processor archi-
tects to produce the same kinds of performance and energy improve-
ments, the trend toward NDP will continue over the next decade.

Architectures such as STARAN or MPP by Goodyear Aerospace or
that of Thinking Machines might get fresh scrutiny, not only from a
parallel-processing perspective but also from a memory- and storage-
centric perspective. Aspects of previously explored PIM architectures
such as DiVA, the Terasys PIM Array, or IBM’s Execube might be res-
urrected, but substantially integrated in silicon. These machines did
not fade away because of lack of performance gains or energy effi-
ciency, but simply because Moore’s law allowed the basic von Neu-
mann machines to outrun them with economic affordability.

The adoption of new architectures and the exploitation of their
advantages in terms of power and performance will not be easy. The
software ecosystem, regardless of any specific host CPU architecture
and manufacturer, will be impacted. The burden will initially be on
software engineers and computer scientists to make these new archi-
tectures programmable for application developers. Heterogeneous
and distributed processing development environments must be made
understandable and easy to use by the general programmer.

Architecturally, NDP is the right place at a system level to provide
an overall increase in performance while simultaneously reducing
power. With proper ecosystem enablement and continued economic
demand for increased computational performance, and with the
nature of silicon processing beginning to fundamentally change over
the next decade, the time has come for nearer-to-memory processing
to help extend the effect of Moore’s law for several more years.
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paradigms. The “Recent Work in Near-Data
Processing” sidebar lists a few example papers
and products to demonstrate this resurgence.

Research challenges in NDP
Although emerging technology presents

several opportunities to implement NDP,
many issues must be addressed and many
problems solved before NDP can become a
ubiquitous computing paradigm. At the
hardware level, packaging and thermal con-
straints must be addressed, communication

interfaces designed, synchronization mecha-
nisms defined, and processing cores opti-
mized for effective exploitation of NDP.
NDP is not just a means to improve effi-
ciency (cost or energy or latency), it is also an
opportunity to design systems with funda-
mentally new capabilities—ones with impor-
tant societal impact that will justify
continued billion-dollar investments as those
that have sustained the computing industry
through the CMOS scaling era (see the
“Everything Old is New Again: How Moore’s

..............................................................................................................................................................................................

Near-Data Computation: Looking Beyond Bandwidth
Moving computation off a system’s main processors and into pro-

cessors embedded in storage devices like SSDs can offer great
improvements in bandwidth for data-centric computations, but the
potential goes far beyond that:

" Avoiding data movement across a PCI Express or SATA bus saves
power.

" Processors in the SSDs are vastly more efficient in terms of
energy per operation than those in the host.

" Code running on the SSDs can be trusted, because it runs in an
independent execution environment.

" Latency for accessing data from within the SSDs is much lower
than it is from the host.

Latency improvements have obvious performance benefits, but
leveraging the first three advantages can lead to significant gains in
energy efficiency and reductions in latency for complex operations
that require data-dependent storage accesses (for example, enforcing
ordering or atomicity guarantees).

The software that implements these application-specific seman-
tics makes modest computational demands, but moving it into the
storage device can have a disproportionate impact on system perform-
ance. For instance, a recently proposed multipart, atomic, write mech-
anism reduces latency for transactional updates by up to 65 percent
and nearly eliminates the bandwidth overheads that logging schemes
incur.1 Likewise, implementing portions of a key-value store on a pro-
cessor in an SSD can improve throughput between 7.5 and 9.6 times.2

Leveraging trusted execution could provide further gains. A
recently proposed storage interface that allows applications to bypass
the operating system on storage accesses that do not modify file sys-
tem metadata could provide even better performance if the file sys-
tem could delegate simple metadata updates to software running in
the SSD.3

To explore the potential of implementing application-specific
semantics within the storage system, we implemented a prototype
SSD that makes programmability the central abstraction for the stor-
age interface.4 Applications can download SSD applications to modify

the device’s behavior and add novel features. Our results show that

defining SSD semantics can allow programmers to exploit all of the

advantages of NDP that we have described. Our experience also

shows that providing flexible programmability in the SSD helps pro-

grammers ensure that the new SSD functionality works seamlessly

with the host-side application. Indeed, it is relatively easy to migrate

portions of legacy programs to the SSD with minimal effort. For

instance, we have embedded information about file system data

structures in an SSD app, so that the SSD can take over common

metadata updates. Because the SSD app uses the same data struc-

tures and algorithm as the original host-side code, the opportunity for

errors is reduced, and the result is simpler host-side code and better

performance owing to reduced I/O traffic to the SSD.
The performance gains that programmable, application-specific

semantics can provide in a storage system can rival those approaches

that exploit intra-SSD memory bandwidth. With careful design, near-

data computing architectures can provide both programmable, exten-

sible semantics as well as data-intensive computational off-load,

ensuring the maximum benefit for the widest range of applications.
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Law Continues to Drive the Future” sidebar).
At higher levels of the system stack, existing
programming models and runtimes must be
adapted, or new ones developed, and big-
data algorithms must be restructured with an
awareness of the data’s location. Security and
programmability are looming as formidable
issues in future large-scale computing, and
NDP could hold the key to effective solu-
tions in these areas (see the “Near-Data
Computation: Looking Beyond Bandwidth”
sidebar). NDP is also strongly influenced by
the needs of different workload domains,
accelerators at different levels of the hier-
archy, and our ability to pull off hardware–
software codesign (see the “Top 10 Reasons
Near-Data Processing Might Be Real This
Time” sidebar).

The four keynote talks at the Workshop on
Near-Data Processing, summarized in three

sidebars to this article, provided many compel-
ling reasons to strongly consider NDP for
future systems. “Everything Old is New
Again: How Moore’s Law Continues to Drive
the Future” cites the difficulties of further
technology scaling combined with recent
advances in main memory technology that
make near-memory processing worth revisit-
ing, and argues that traditional architectures’
bandwidth and energy constraints will push
designs toward NDP in future systems.
“Near-Data Computation: Looking Beyond
Bandwidth” lists the varied advantages of
processing data near storage devices such as
solid-state drives. “Top 10 Reasons Near-Data
Processing Might Be Real This Time” empha-
sizes the confluence of technology, workload,
and IT ecosystem trends that could enable the
wide adoption of NDP; it also provides a list
of reasons to strongly consider NDP.

..............................................................................................................................................................................................

Top 10 Reasons Near-Data Processing Might Be Real This Time
Motivated by technology trends such as nonvolatile memories, die

stacking, and dark silicon, and the rapid development and adoption of
distributed big-data software such as MapReduce, researchers have
started directing system architectures toward a new paradigm of

resource-efficient, data-centric computing.1 This approach is based on
a few key design principles—namely, using NDP; specializing compu-

tation to accelerate data processing; redesigning the cache, memory,
and storage hierarchy; and redesigning the software/hardware inter-
face to enable cross-layer optimizations.

In proposing and evaluating NDP architectures, we must answer
what makes these schemes different from earlier PIM designs, and

why NDP might be real this time. The optimism toward NDP comes
from recent studies that demonstrate its significant performance and

energy-efficiency potentials. Our research in NDP has received posi-
tive feedback from colleagues and funding agencies, and has enabled
discovery of potential use cases in the oil and gas industry, financial

industry, databases and NoSQL systems, new storage systems, and
graph and event processing. However, widespread adoption of NDP
will require a system architecture roadmap backed by the larger R&D

community. Users need early access to prototypes, programming, and
tool-chain support, as well as a clear software migration path in

anticipation of future NDP hardware. Wide adoption of the NDP para-
digm hinges on solving these critical issues to address the software
versus hardware cause-and-effect dilemma.

Here, we summarize the top 10 reasons for a revitalized NDP 2.0,
based on insights gained from our collaborative research efforts.

1. Necessity. The renewed focus on efficiency and the increasing
overheads of computing-centric architectures make NDP a prom-

ising alternative for the following reasons: moving computation

close to data reduces data movement and cache hierarchy over-

head; matching computation to data capacity, bandwidth, and

locality needs enables the rebalance of computing-to-memory

ratios; and specializing computation for the data transformation

tasks further improves efficiency.
2. Technology. 3D and 2.5D die-stacking technologies have

matured to enable the integration of computing and data stores

(memory, storage, or unified) without the previous disadvan-

tages of merged logicþmemory fabrication. The close proximity

of computation and data also enables high bandwidth at a low

energy overhead. These two reasons make the strongest case

for NDP.
3. Software. Distributed software frameworks such as MapReduce

have popularized the concept of moving computation to data

and smoothed the learning curve of programming NDP hard-

ware. Such frameworks can also handle tough NDP software

issues such as data layout, naming, scheduling, and fault

tolerance.
4. Interface. NDP requires a host- and memory-decoupled interface

that would have been impossible with today’s DDRx standard.

However, the dominance of a desktop- and server-based mem-

ory interface is likely to change because of two trends: mobile

DRAM is rapidly replacing desktop and server DRAM as the

new commodity memory, and there is already a proliferation of

new memory interfaces, such as DDR4, LPDDRx, Wide I/O,

HBM, and HMC. More importantly, new interfaces such as HMC

have already included preliminary NDP support, such as smart

..............................................................................................................................................................................................
BIG DATA

............................................................

40 IEEE MICRO



The six papers presented at the work-
shop provide new thoughts on the poten-
tial evolution of this field, and new results
with evidence of related innovations and
developments.

L ocality of computation has always been
a key aspect in designing algorithms to

solve a problem on a computing system, and
also in designing computing systems for solv-
ing a given problem. We have reached an
inflection point where the nature of technol-
ogy available to continue scaling the capabil-
ities of computing systems has changed,
while at the same time, the nature of prob-
lems that must be solved has also changed.
Locality of computation in this new environ-
ment is likely to come from computing para-
digms that distribute computing into the
memory and storage hierarchy, closer to
where the data reside. NDP is a paradigm

that shows significant promise in helping to
transport us into the new computing land-
scape. The Workshop on Near-Data Process-
ing served to highlight the need for this
transition, and broaden the interest to a
larger community. MICRO

Acknowledgments
Some of this work was performed while

Jichuan Chang was at HP Labs.

....................................................................
References
1. P. Kogge, “A Short History of PIM at Notre

Dame,” July 1999; www.cse.nd.edu/$pim/

projects.html.

2. C.E. Kozyrakis et al., “Scalable Processors

in the Billion Transistor Era: IRAM,” Com-

puter, vol. 30, no. 9, 1997, pp. 75-78.

3. T.L. SterlingandH.P.Zima,“Gilgamesh: AMul-

tithreaded Processor-in-Memory Architecture

refresh and host-device decoupling. More sophisticated NDP
protocols can be further developed by leveraging these basic
services.

5. Hierarchy. New nonvolatile memories (NVMs) that combine
memory-like performance with storage-like capacity enable a
flattened memory/storage hierarchy and self-contained NDP
computing elements. In essence, this flattened hierarchy elimi-
nates the bottleneck of getting data on and off the NDP
memory.
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7. Heterogeneity. NDP often involves heterogeneity for specializa-
tion and for the flexibility needed to support a wide range of
workloads. This could have been a barrier, but recent advances
in programming and in managing heterogeneity (as in GPU/APU,
big.LITTLE, FPGA/SoC) are already clearing the road to NDP
adoption.

8. Capacity. Advantages of using NVM in NDP are the much-larger
device capacities and typically lower cost per bit—key factors
in reducing system cost. A more fundamental, yet often over-
looked, benefit of having larger capacity per NDP element is the
reduction in system scale for a fixed dataset size. This is an
advantage because smaller systems have lower failure rates

and reduce software parallelization barriers. In contrast, early

NDP designs were limited by small device capacities that forced

too much fine-grained parallelism and interdevice data

movement.
9. Anchor workloads. A commercially viable anchor market is

critical for the adoption of a new technology. Codesigned

big-data appliances appear to present an ideal market for

introducing NDP. Indeed, IBM’s Netezza and Oracle’s

Exadata are already marketing NDP products in limited

forms.
10. Ecosystem. Prototypes, tools, and training are also critical ele-

ments for the adoption of NDP by nonexpert programmers. The

confluence of several recent technologies is helping the emer-

gence of such an ecosystem. Software programming models

such as OpenMP4.0, OpenCL, and MapReduce, along with hard-

ware prototypes by companies such as Adapteva, Micron, Vin-

ray, and Samsung, can provide the basis for developers to build

NDP apps.

We hope that reexamining such fundamental issues in today’s

context helps make the case for NDP and the need for more research

in this direction.
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