Trading Bandwidth for Latency:
Managing Continuations Through a Carpet Bag Cache *

Richard C. Murphy and Peter M. Kogge
Computer Science and Engineering Department
University of Notre Dame
{rcm,kogge } @cse.nd.edu

Abstract

Processing-In-Memory (PIM) circumvents the von Neu-
mann bottleneck by combining logic and memory (typi-
cally DRAM) on a single die. This work examines the
performance of a mobile thread execution model in which
threads traverse the system’s address space in search of
their required data over a massively parallel PIM array
targeted at petaflop performance. This model is enabled
through the use of a carpetbag cache which travels with
the thread and provides data from the node previously vis-
ited. In this way, the latency of traveling to a node already
visited is avoided by paying the additional bandwidth and
packaging costs associated with moving the cache. Fur-
thermore, it is shown that thrashing between two nodes
will generally occur without the use of the cache. Each
of the simulations conducted in this work was conducted
under stress. By using the Data Intensive Systems (DIS)
benchmark suite, the model was subjected to “worst case”
memory access patterns, and ultimately still proved highly
successful. Additionally, it is shown that this model caters
to the positive aspects of a PIM — specifically, the very fast
local memory access available.

1 Introduction and Motivation

Processing-in-Memory (PIM)[11, 10, 4] (also known as
Intelligent RAM [19], embedded RAM, or merged logic
and memory) systems exploit the tremendous amounts of
memory bandwidth available for intra-chip communica-
tion, and therefore circumvent the von Neumann bottle-

*The work described here was funded in part by the University of
Notre Dame, in part by the HTMT project run by the Jet Propulsion
Propulsion Laboratory, California Institute of Technology and sponsored
by the Defense Advanced Research Projects Agency (DARPA) and the
National Security Agency (NSA) through an agreement with the Na-
tional Aeronautics and Space Administration, and in part by DARPA
and Rome Laboratory, Air Force Material Command, USAF, under co-
operative agreement number F30602-98-2-0180 as part of the Data In-
tensiVe Architecture (DIVA) Project under the Data Intensive Systems
(DIS) program.

Proceedings of the Intemational Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA02)
1527-1366/02 $17.00 © 2002 IEEE

neck, by placing logic and memory (typically DRAM) on
the same die. This technology allows for the construction
of highly distributed systems, but with a very large latency
gap between high speed local memory macro accesses and
remote accesses. The construction of high performance
systems incorporating PIMs must successfully exploit the
bandwidth available for on-chip accesses while simultane-
ously tolerating very long remote access latencies. Multi-
threading, similar to that used in the Tera[1], seems the
natural method for tolerating remote accesses, however,
such a model does not inherently take advantage of the
relatively large amount of quickly accessed memory avail-
able on a PIM node. In fact, the Tera generally requires
about the same amount of persistent state as available in
the L1 cache of a modern microprocessor[1], and a typi-
cal PIM node is likely to have 3 to 4 orders of magnitude
more memory available. Furthermore, very large PIM ar-
rays consisting of up to one million nodes and targeted
at petaflop performance require tremendous numbers of
threads to tolerate remote access latencies. The problem
is compounded when one takes into account the difficulty
in translating the name of remote objects or pages which
are in motion. Traditional techniques which may scale to
0O(1000) nodes are generally unsuitable for arrays of this
magnitude. Furthermore, those techniques generally do
not address the problems encountered by data intensive
algorithms (ie, those with large datasets that exhibit low
reuse), nor do they fit well into a PIM architecture which
must exploit the high speed/high bandwidth local DRAM
access to be successful over non-PIM implementations.
This paper examines the carpetbag cache protocol to
support the movement of a thread from one node to an-
other. This process consists of the packaging, trans-
mission, and continuation of a thread on another node
when a remote memory access is generated. It allows for
static data placement in which computation pursues data
throughout the system. Rather than having a remote mem-
ory access cause a fetch, the computation is packaged and
sent to the node upon which the remote data resides. It
will be shown that this model is highly effective at trading

YF]',F.

COMPUTER
SOCIETY

bandwidth (in terms of shipping a large continuation) for
latency (in terms of reducing the number of communi-
cation events as well as emphasizing one way communi-
cation over round trip accesses). Furthermore, it will be
shown that threads are capable of very long run lengths on
a node before moving, thereby emphasizing the fast local
memory access available to a PIM node.

This paper is organized as follows: Section 2 reviews
PIM architecture in general as well as the specific archi-
tecture targeted for the carpetbag cache. Section 3 exam-
ines the carpetbag cache architecture. Section 4 discusses
the simulation methodology. Section 5 details the two
Data Intensive Systems (DIS) benchmarks used during
experimentation. And, finally, Sections 6 and 7 present
the results of experimentations and the associated conclu-
sions.

2 PIM Architecture

Modern processors require that tremendous amounts of
data be provided by the system’s memory hierarchy. This
demand is becoming increasingly difficult to meet. The
core problem, known as the von Neumann Bottleneck
relates to the separate development of processing and
memory technologies, and the different emphasis placed
on each. Processors, built around logic fabrication pro-
cesses which emphasize fast switching, generally follow
Moore’s law, while memories emphasize high density but
relatively low data retrieval rates. The interconnection
mechanism between the two is a narrow bus which can-
not be greatly expanded due to the physical limit on the
number of available pins and high capacitance of inter-
chip communication.

Recent developments in VLSI technology, such as the
trench capacitor compatible with logic processes created
at IBM, now allow for fabrication facilities which offer
both high performance logic and high density DRAM on
the same die. These PIMs further allow for the creation
of much higher bandwidth interconnection between local
memory macros and logic since it all occurs on chip.

Several proposals exist which attempt to fully utilize
the potential of these fabrication processes. The IRAM
project[19] at Berkeley seeks to place a general purpose
core with vector capabilities along with DRAM onto a die
for embedded applications. Cellular phones, PDAs, and
other devices requiring processing power and relatively
small amounts of memory could benefit tremendously
from this type of system, even if one only considers the
potential advantages in power consumption. Others, such
as members of the Galileo group[5] at the University of
Wisconsin see PIM as having tremendous potential in
standard workstations where the on chip memory macros
would become all or part of the memory hierarchy. More

Proceedings of the Intemational Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA02)
1527-1366/02 $17.00 © 2002 IEEE

recently, the Stanford Smart Memories project[14] began
exploring the construction of single chip systems capable
of supporting a diverse set of system models.

The DIVA project [10] is currently investigating sys-
tem and chip level implementations for PIM arrays func-
tioning as part of the memory hierarchy in a standard
workstation. Finally, the HTMT[20, 12] project is a
multi-institutional effort to construct a machine capable
of reaching a petaflop or above in which a large part of
the memory hierarchy consists of PIMs. This portion of
the memory hierarchy is a huge, two-level, multi-threaded
array.

COLUMN (BIT LINE)
MEMORY MACRO
ROW
ROW
DECODER
(WORD LINE)
‘ SENSE AMPLIFIERS ‘
‘ PEN ROW REGISTER (2K-bits) ‘
COLUMN DECODER ‘
INCOMING REQUESTED VALUE (WIDE WORD)

ADDRESS
‘ REGISTER FILE (256-bits wide) ‘

PROCESSOR
(Wide Word Vector Unit)

Figure 1: Typical PIM Memory Layout

Figure 1 show a typical single node PIM layout. In the
case of the target At the Sense Amp Processor (ASAP)
Architecture[17], a wide word processor (capable of op-
erating on 256 bit vectors in 8, 16, or 32 bit chunks) is
tightly coupled with a set of memory macros. For the pur-
poses of simulation, it is assumed that the memory macro
provides 2 k-bits of data per operation through a single
open row register. The ASAP’s register file then accesses
that data in 256 bit chunks as if from an 8 by 256 bit reg-
ister file. Thus, while a random read from memory will
cause a DRAM access, a read contained in the current
open row does not incur that penalty (because it is simply
a register transfer operation).

It should be noted that, unlike other proposed PIM im-
plementations, the ASAP is designed to be a simple vec-
tor machine tightly coupled to the memory macro. Given
this tight coupling, it is critical to view a successful mem-
ory management scheme in terms of exploiting fast local
memory accesses. The simplicity of the processor allows
for more of the surface area of the chip can be devoted
to memory. Furthermore, a model of latency toleration
(through multi-threading) contributes significantly to this

YF]',F.

COMPUTER
SOCIETY

notion. This not only takes fuller advantage of the high
speed local DRAM access times, but helps in fabrication
yield (in that memory defects are more easily addressed
than logic defects). Furthermore, chips will contain mul-
tiple nodes (processors and associated memory macros)
connected through a high speed interconnection network.

The array of PIMs simulated is assumed to be homo-
geneous. For the purposes of this paper, no particular in-
terconnection topology is assume (rather, communication
events are merely counted). Experimentation over vari-
ous topologies can be found in [15]. In actuality, a PIM
array is likely to be heterogeneous (potentially consisting
of PIMs of different types — SRAM and DRAM - and dif-
ferent sizes), and the interconnection network hierarchi-
cal. Multiple nodes will be present on a chip, facilitating
significantly faster on-chip communications mechanisms
versus off chip communication mechanisms. Addition-
ally, since PIM systems may be part of a larger mem-
ory hierarchy, additional non-PIM processing resources
or memory may be available.

PIMs, in our model, communicate through the use of
parcels, which are akin to Active Messages [22], are mes-
sages possessing intrinsic meaning directed at named ob-
jects. Rather than merely serving as a repository for data,
parcels carry distinct high level commands and some of
the arguments necessary to fulfill those commands. Low
level parcels (which may be handled entirely by hardware)
may contain simple memory requests such as: “access the
value X and return it to node K.” Higher level parcels are
more complicated and may take the form “resume execu-
tion of procedure Y with the following partially computed
result and return the answer to node L.” Thus, it should
be assumed that parcels can perform both communication
and computation, and may be invoked by the user, run-
time system, or hardware.

In terms of latency and bandwidth, latency is repre-
sented in the number of transactions generated over the
network. Once such a transaction is generated, difference
in cost between a long transaction and a short transaction
is considered to be negligible. This is characteristic of
a high bandwidth interconnection network connecting a
very large number of nodes.

3 Carpetbag Cache Architecture

The carpetbag cache supports the movement of a thread
from one node to another. In the Mobile Thread
Model[15, 16], a thread executes on a given node until
it generates a remote memory access. That access causes
the thread to be packaged and moved to the node contain-
ing the data. Experimentation has shown that given a sim-
ple data placement scheme (in which data is divided into
large contiguous chunks — see Section 4)) if the thread

Proceedings of the Intemational Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA02)
1527-1366/02 $17.00 © 2002 IEEE

moves every time a remote access is encountered it will
often thrash between two nodes[15, 16]. This thrashing
occurs because when the request for remote memory oc-
curs a small amount of data from the node upon which the
thread is currently executing is still needed. The carpetbag
cache is designed to capture this data.

NODE A NODE B
MEMORY MEMORY
MACRO MACRO
CARPET BAG /\\CARPET BAG
CACHE CACHE
/ /_\\ -
\ THREAD !
\ !

Figure 2: Thread Movement using a Carpetbag Cache

Figure 2 shows the movement of a thread from Node
A to Node B. The parcel representing the thread con-
tains the code and stack needed by the thread, its register
set, and associated carpetbag cache. The contents of the
cache represent data from the current node (in this case
A) which is likely to be useful on the next node (B). This
data is gathered using a standard caching mechanism. The
simulated mechanism is a fully associative 256 bit word
data cache with a true LRU replacement policy.

REQUEST DATA
FROM PREVIOUS
NODE

NOTE: THIS MISS

HIT
OTE:THIS _ |[CARPET BAG CACHE.
18 JUST HELD FROM PREVIOUS NODE

IN MEMORY

CARPETBAG CACHE
TRANSLATION UNIT

MEMORY MACRO
MEMORY REQUESTS
POINTING TO THE
PREVIOUS NODE

MEMORY MEMORY ACCESS

ACCESS BUFFER
UNIT AGE | ADDRESS
MEMORY REQUESTS

WITH ADDRESSES ON
THE CURRENT NODE

PROCESSOR

HOLD MOST
RECENTLY USED
ADDRESSES FROM
THE CURRENT NODE

Figure 3: Carpetbag Cache Construction

Figure 3 shows the mechanism used to construct and
utilize a carpetbag cache. The memory macro on each
node contains the data used by the carpetbag cache (in
256 bit words). A fully associative translation unit is used
to determine where remote accesses pointing to the previ-
ous node reside (in the carpetbag cache, or on the previous
node). This translation unit could, in fact, be implemented
in software if references to the previous node caused a trap
into the operating system. For the purposes of this simu-

YF]',F.

COMPUTER
SOCIETY

lation, however, it is assumed that the translation informa-
tion is immediately available.

Given the nature of the ASAP vector processor, the
cache could easily be implemented as a balanced oct tree.
The most highly reused words can be held in an actual
cache, while the rest can easily be located in the tree.
When compared to potentially performing a remote mem-
ory access, searching a relatively small 8-ary tree proves
relatively painless. Furthermore, as the system relies upon
multi-threading, the only overhead associated with the
search is the search itself.

The carpetbag cache for the next node is constructed
using a Memory Access Buffer. All requests to the local
node are placed into this buffer in true LRU order (though
other schemes more easily implemented in silicon could
be used). When the thread is packaged for movement to
the next node, the runtime system can scan the buffer and
place any appropriate words into the parcel for transmis-
sion. Again, this could be done entirely in hardware, and
for the purposes of simulation it is assumed to occur very
quickly. In the event that a memory request which refer-
ences the previous node is generated but misses the car-
petbag cache, a read request occurs and the cache records
a miss.

This arrangement leads to a potential synchronization
problem in that words contained in the carpetbag cache
of another thread may be requested on a different node.
Though a complex coherency protocol could be used in
future work, it is assumed that the machine under exam-
ination contains a full/empty bit for each 256 bit word.
When a word is placed in the carpetbag cache for a given
thread, the word is marked empty in the local node’s mem-
ory macro. Any thread attempting to access that word
blocks and is placed on a queue until the word is marked
full. When a thread moves from one node to another, the
dirty words in its carpetbag cache are copied back to the
previous node so that those words may be marked full,
the new cache is then constructed from data on the cur-
rent node. In this way, the carpetbag cache only contains
data from the thread’s previous node. A more general sys-
tem (discussed briefly in [15]) adds significant additional
synchronization complexity.

Figure 4 shows the procedure used to translate a mem-
ory access and fetch the appropriate location.

This particular scheme may appear inflexible in the face
of read-read sharing. The data intensive benchmarks pre-
sented in this work (see Section 5) generally exhibit low
degrees of read-read sharing (this is precisely why they
are so difficult for most modern architectures). There are
generally two strategies for supporting read-read sharing
in the mobile thread model. First, the compiler (or user,
or runtime system) can mark words in memory as be-
ing read-read shared. This would allow the memory sys-

Proceedings of the Intemational Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA02)
1527-1366/02 $17.00 © 2002 IEEE

MEMORY
ACCESS

LOCAL? ACCESS DATA IN LOCAL MEMORY

yes

no

) MOVE THREAD TO NEW
FROM PREVIOUS NODE? —————= 0CATION

yes

IS THE DATA IN THE
SMALL HARDWARE
CACHE?

—> ACCESS DATA IN CACHE
yes

no

IS THE DATA IN THE CARPETBAG
CACHE’S OCT-TREE

— ACCESS CARPETBAG
yes CACHE DATA

no

READ THE REMOTE WORD

Figure 4: Memory Access Procedure

tem to freely copy them, however traditional locks would
have to be used to perform updates. (More generally, the
data could also be replicated across nodes and marked
as unavailable to the carpetbag cache.) The second ap-
proach is to rely upon the multi-threaded execution used
by the machine to support sharing. In the presence of suf-
ficient concurrency, having threads blocked on read-read
shares is not particularly difficult for the system to han-
dle. This is especially true given that the carpetbag cache
in this model only holds data from the previous node
visited. Simulation shows that threads move reasonably
often, and, upon movement, the updated contents of the
carpetbag cache are returned to the previous node.
Ultimately, this model emphasizes the following:

e Page tables or other data structures managing the
translation of names become small.

e Static data placement significantly reduces the syn-
chronization involved in updating distributed ver-
sions of those structures.

e The physical location of a given computation need
not be tracked at all. Threads can freely roam the
system without causing the update of complicated,
distributed data structures. Specifically, if various
threads communicate through shared memory, they
need not know the physical node upon which the
thread with which they are communicating resides,
only the location of the shared memory.

e Programming models can emphasize moving to a
given node, exhausting the data present, and mov-
ing on. Simple mechanisms for delivering such data
can easily be provided by the runtime system.

YF]',F.

COMPUTER
SOCIETY

e No round trip communication is necessary since the
thread can move to the data rather than requesting
data which must then be returned. This eliminated
one high latency penalty upon each movement.

The potential disadvantages are:

e Load balancing may be difficult, especially if data
placement relies upon highly shared data structures
(that is, a given node could become a bottleneck if
sufficient computation resources are unavailable).

e The runtime system must be capable of dealing with
threads which have run a muck.

e It may be impossible to group data such that re-
lated items are together. (This experimentation, us-
ing benchmarks which are among the worst known
in this regard, indicates that this is really not a prob-
lem.)

In terms of load balancing, programmers must already
deal with the same problem in that shared data may be-
come a bottleneck. As for the second potential objec-
tion, that the runtime system must seek out “dangerous”
threads, it is possible for threads to be destroyed by hold-
ing expired capabilities. For example, freeing all the
memory associated with a process could cause a thread
executing on that process to be destroyed once it makes a
memory access. Finally, the third potential disadvantage
(which could be most detrimental to the system) is shown
here and in [15, 16] to be very easily avoided. In fact, if
no special attention to grouping is paid (other than that al-
ready paid by a standard operating system), the system is
highly effective.

4 Simulation Methodology

SHADE

INSTRUCTION STREAM

INSTRUCTION INFORMATION:
OP CODE, REGISTERS USED, |
TARGET (EFFECTIVE ADDRESS), |
ANNULED STATUS, ETC. :

THREAD PACKAGE
| CALLBACKS

° MACHINE INFORMATION:|
o (PRIMARILY STATE)

INSTRUCTION |

USER WRITTEN ANALYZER

. ANALYSIS ENGINE CODE

)

SPECIAL LOAD
INSTRUCTION

CCURRENT THREAD
STATE

MACHINE STATE

L THREAD TRAGEGUTPUT ™+ ____| ="
THREAD 1 THREAD N DEPENDENCY.
e DATA

Figure 5: Shade Simulations

BRANCH
INSTRUCTIONS, ETC)

INSTRUCTION N

This work uses the Shade simulation suite[21] to ex-
tract a program trace from a SPARC binary. Figure 5

Proceedings of the Intemational Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA02)
1527-1366/02 $17.00 © 2002 IEEE

shows the simulation mechanism. User written code ex-
amines the running instruction stream and records events
of interest. Since the Shade suite traces SPARC instruc-
tions, the simulated ISA corresponds roughly to that of
a typical RISC machine. This obviously does not repre-
sent the vector ASAP ISA, however, this work is primarily
concerned with the performance of the carpetbag cache
which only requires memory access information.

Shade has no knowledge of kernel bound threads. This
work uses a custom user level thread package that calls
back into the shade analysis code to indicate thread events
such as changing threads or blocking on a lock. This in-
formation is also used to generate a primitive dependency
graph which indicates when one thread must wait for an-
other to finish its computation (and release the lock) be-
fore proceeding.

To allow the simulation to be tractable, input sets were
restricted to the 250-750 MB range, as appropriate for the
particular benchmark. Given that individual PIM sizes are
significantly less than even the minimum size presented,
many opportunities for movement between nodes are gen-
erated. Additionally, simulation was limited to a 32-bit
address space. Data sets were divided into three parts:
code (as indicated by portions of memory subject to an
instruction fetch), the stack (which grows down from the
top of the address space), and the heap (everything else).
Thread traces were further limited to 500,000,000 instruc-
tions.

The shade simulator extracts a trace of each thread
along with the dependency information. These traces are
then provided to carpetbag cache simulation tools that
tack the performance of the cache and the state of the
memory system over a homogeneous PIM array. The
memory allocation mechanism is inherited from the orig-
inal shade simulation — specifically, memory is allocated
in the order in which it was requested. The data is then
placed on PIMs in consecutive chunks corresponding to
the given PIM size.

It should be noted that these simulations only examined
accesses to the heap. The stack and code demands of very
large threads from the same benchmark suite have been
shown to be relatively small[15]. Furthermore, since there
are other strategies available for dealing with those types
of accesses exist (such as loading the code for a given
thread on each node before execution, or only transmitting
a small top segment of the stack), only the more compli-
cated (and random) heap access is examined.

Although the shade simulation model assumes that the
actual program code consists of scalar RISC instructions
(which the ASAP handles by choosing an appropriate por-
tion of the vector datapath to execute a given scalar in-
struction), it should be noted that the vector capabilities of
the processor are exploited in terms of reducing the over-

YF]',F.

COMPUTER
SOCIETY

head of page translations or cache look-ups. Using a vec-
torizing compiler, the number of instructions in a given
run would be reduced, however, the memory access pat-
tern would not.

5 Benchmarks

This work concentrates on the analysis of a subset of the
Data Intensive Systems (DIS) benchmark suite[2, 3] that
has been hand threaded. These benchmarks are atypi-
cal in that their memory access patterns exhibit a low
degree of reuse and non-linear stride. Thus the bench-
marks tend to exhibit worst case memory access patterns
in that the probability of generating a remote access is
higher. Clearly in the case of PIM (and the carpetbag
cache in particular) the performance of the memory sys-
tem is of paramount importance. These “worst case” num-
bers show the system under stress rather than achieving
peak performance. Most benchmark suites, in sharp con-
trast, are designed to be quickly captured in a processor’s
cache so as to measure raw computation power. This is
somewhat misleading since the performance of most mod-
ern architectures is determined by that of the memory sys-
tem, and in the case of large PIM arrays the numbers hold
significantly less meaning.

The research that preceded this work[15, 16] used a sin-
gle threaded model to investigate the memory access char-
acteristics of the entire benchmark suite. Originally, the
work focused on the performance of the SPEC95[18] in-
teger and floating point suites. These experiments yielded
simplistic results as the memory access patterns were both
regular and easily accommodated by small PIMs. Tests in
which the data set sizes were increased did not fare much
better in that the benchmarks themselves tend to use data
with a high degree of both spatial and temporal locality.

Use of the DIS suite yielded significantly more inter-
esting results, though each of the benchmarks proved very
similar in memory system performance. Given the diffi-
culty associated with multi-threading the benchmarks and
the high simulation cost, two programs were chosen from
the suite as representative of Data Intensive programs.

The first, the Method of Moments (MoM) benchmark
represents algorithms which are frequency domain tech-
niques for computing electro-magnetic scattering from
complex objects. Typical implementations employ direct
linear solves, which are highly computation intensive and
can only be applied to reasonably low frequency prob-
lems. The faster solvers applied in this benchmark are
memory bound since reuse is extremely low and access
patterns exhibit non-uniform stride. This benchmark is
derived from the Boeing implementation of fast iterative
solvers for the Helmholtz equation[6, 8, 7]. This is the

Proceedings of the Intemational Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA02)
1527-1366/02 $17.00 © 2002 IEEE

most computationally intensive DIS benchmark and it uti-
lizes large matrices with non-uniform stride.

The second, in contrast, is the Data Management
(DM) benchmark which implements a simplified object-
oriented database with an R-Tree indexing scheme [9, 13].
Three operations are supported: insert, delete, and query.
For the purposes of these experiments, only the query op-
eration was examined. The indexes are composed of many
small objects and have a high degree of pointer chasing.

These two benchmarks exhibit highly non-uniform
stride memory accesses with very low reuse, and, given
previous experimentation, prove representative of the en-
tire suite. They contrast in the method used to generate
that access pattern (large matrices vs. pointer chasing),
and in the way in which they are multi-threaded. The
Method of Moments benchmark has a very large number
of relatively short threads, while the Data Management
benchmark has significantly longer threads (though nearly
an order of magnitude fewer of them).

6 Results

The measure of success for the carpetbag cache is pre-
sented as the mean run length before an off chip reference
is generated. In this case, the run length is the total num-
ber of uninterrupted instructions a given thread can exe-
cute. Long run lengths (which can amortize the cost of
moving the thread) are considered highly desirable. Simi-
larly, the cost associated with achieving these run lengths
is measured in terms of the size of the carpetbag cache.

6.1 Baseline Configurations

Previous work has shown that the best performance num-
bers for these benchmarks are achieved using very large
pages [15, 16]. This is not surprising given that they are
data intensive and have extremely large working sets. Fig-
ure 6 shows the baseline results for a standard VM paging
scheme. In particular, it gives the Cumulative Instruction
Probability Density (CIPD), which represents the proba-
bility that a runlength of size n or greater will be achieved.
As the figure clearly shows, it is extremely difficult to
achieve run lengths greater than 1000 instructions.

These results account for neither the overhead of trans-
lation nor the overhead of fetching the page. However,
it is easily observed that a very large number of mem-
ory system transactions are generated very quickly. The
Carpetbag cache no only generates fewer transactions,
but changes round trip communication into pont-to-point
communication.

YF]',F.

COMPUTER
SOCIETY

PIM Size vs. Mean Run Length Between Remote Accesses
DIS Data Management —— 256K DATA 10 T T T
T T

10° . . . — DIS Data Management
— - DIS Method of Moments

\\wmsplm 10° -7

Run Length

o

o

Probability (Cumulative to the Right)

10° 10° 10 10° 10! . : v y
Instruction Counts Between Misses 0 5 10 15 20 25 30 35
PIM Size in MB

DIS Method of Moments —— 256K DATA
10 T T T T T T

Figure 7: Mean Run Length vs. PIM Size (in MB)

32 MB PIM DIS Data Management
10 T

., — 2MBPIM
il] —- 4,8,16,and 32 MB PIM

Probability (Cumulative to the Right)
s
T
®
.

Miss Rate

I I I I I I
10° 10° 10° 10 10° 10
Instruction Counts Between Misses

Figure 6: 256 KB Paging VM System

5 I I I

10° 10’ 10° 10° 10°
Carpet Bag Cache Size (256 bit words)
6.2 MObile Thread DIS Method of Moments
— 2MBPIM
It should be noted that experimentation without the car- = ;QGMSE:E -
— - 16an

petbag cache showed a truly multi-threaded mobile thread
model to be unsustainable. The mean run length between
off node references (when the thread would move every
time a miss was generated and had no carpetbag cache
to look back on) never exceeded 500 instructions. This
heavy thrashing would have proven detrimental to system
performance as the cost of moving the thread could not
be amortized over the execution of that thread on a given
node.

Miss Rate

6.3 Carpetbag Cache 10 S : 5 .

10 10° 10 10
Carpet Bag Cache Size (256 bit words)

Figure 7 shows that both benchmarks very quickly ramped

up to long run lengths between misses. In fact, an 8 MB Figure 8: Miss Rate vs. Carpetbag Cache Size

or greater PIM seems to afford very long runs without re-

mote accesses. This corresponds directly to the size of a

PIM which demonstrates significant capture of a working Figure 8 shows the effectiveness of the carpetbag cache
set [15, 16]. in terms of size versus miss rate. For either benchmark

YF]',F.

Proceedings of the International Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA'02) COMPUTER
1527-1366/02 $17.00 © 2002 IEEE SOCIETY

0O(10) 256-bit words achieve a hit rate near 90%. The
only unusual line in either graph is the Method of Mo-
ments 8 MB PIM miss rate, which shows a dramatic drop
in miss rate with a cache of approximately 100 words.
This suggests that an 8 MB partitioning of the data yields
a significant performance increase, which is confirmed by
hand analysis of the code.

In general, however, 1000 256-bit words (or, approxi-
mately 32 KB of data) will yield a less than 1% miss rate.
While implementing what effectively amounts to a 1000
entry TLB in hardware (for the carpetbag cache transla-
tion) would probably be too costly, trapping to the runtime
system and performing a vector enabled look up before
generating a high latency remote memory access would
not be.

On the ASAP processor, searching for a 32-bit ad-
dress in a carpetbag is performed very quickly using an
oct-tree lookup (the ASAP is capable of operating on
256-bit vectors in 8, 16, or 32-bit chunks). Moving to
64-bit addresses (and assuming the architecture were ex-
tended to operate in 64-bit chunks), a quad-tree lookup
could be performed. This simple trap to the OS requiring
O(logg 1000) ~ 2.08 or O(log, 1000) =~ 4.98 iterations
through a tight vector loop is a negligible cost to pay in
comparison to the latency of a remote network communi-
cation.

7 Conclusions and Future Work

This paper presented a unique method of managing con-
tinuations through a mobile thread model. This model em-
phasizes trading bandwidth for latency in that parcel size
is considered significantly less important than the number
and type of communications required. This is characteris-
tic of the very large parallel arrays we are targeting (and
interconnection networks in general).

The data structure enabling this model is the carpet-
bag cache which is designed to capture data on one node
for transportation to another. Reasonable performance is
achieved with a relatively small cache, whereas, unsur-
prisingly, the cost increases significantly to achieve hit
rates over 90%. These costs, however, are not extraordi-
narily high when one considers the high cost of commu-
nication between nodes. Furthermore, the possibility to
balance the cost of communication with the cost of hard-
ware exists in that the performance hit associated with
software performing some of the cache’s duties can be
amortized by avoiding the communication. This leads to
the possibility of very powerful hardware/software trade
offs. Software further allows more complex trade offs to
be made. For example, a node could look at the distance
between it and the node to which the thread is moving
(and therefore the cost of communication) when deciding

how big the cache to be constructed will be. Addition-
ally, these benchmarks represent the worst case numbers
because they exhibit (by design) low reuse and low spa-
tial locality. The long run lengths exhibited are largely a
product of the caching structure and the nature of the way
in which programmers allocate data. Specifically, even
though the program may be chasing pointers, the proba-
bility of that pointer being on the same PIM node is quite
high due to the size of the node and the allocation mecha-
nism. Furthermore, the carpetbag cache caters to the com-
mon case — that thrashing will be between two nodes.

Future work will examine the hardware/software trade
offs of the carpetbag cache architecture. While this paper
demonstrates the viability of the model, several questions
as to the specifics of an implementation remain. Specif-
ically, examining the traffic patterns of many fine grain
mobile threads traversing a system with realistic commu-
nication implementations would prove highly interesting.
While for the purposes of these simulations we can as-
sume that such contention is no worse than reading a data
hot spot, the specifics of a runtime system implementa-
tion will be addressed next. Finally, the impact of a vector
ISA on everything from the memory system performance
to the ability to quickly resolve a “previous node memory
access fault” is of paramount importance to the design of
the ASAP ISA.

In addition, a prototype version of a PIM node known
as “PIM Lite” is currently in the final stages of design
and layout with real silicon expected by the summer of
2001. PIM Lite incorporates many of the key concepts
discussed in this paper, such as hardware multi-threading,
wide word operations, and a limited thread context cache
that can be used to prototype runtime systems supporting
carpetbag cache operations.

References

[1] Robert Alverson, David Callahan, Daniel Cum-
mings, Brian Koblenz, Allan Porterfield, and Burton
Smith. The Tera System.

[2] Atlantic Aerospace Electronics Corporation. Data-
Intensive Systems Benchmark Suite Analysis and

Specification, 1.0 edition, June 1999.
[3]

Atlantic Aerospace Electronics Corporation.
Data Intensive Systems Benchmark Suite,
http://www.aaec.com/projectweb/dis/,

July 1999.

[4] Jay B. Brockman, Peter M. Kogge, Vincent Freeh,
Shannon K. Kuntz, and Thomas Sterling. Mi-
croservers: A New Memory Semantics for Mas-

sively Parallel Computing. In ICS, 1999.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Intemational Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA02)
1527-1366/02 $17.00 © 2002 IEEE

[5]

[10]

[11]

[12]

[13]

[14]

[15]

Doug Burger. System-Level Implications of
Processor-Memory Integration. Proceedings of the
24th International Symposium on Computer Archi-
tecture, June, 1997.

B Dembart and E.L. Yip. A 3-d Fast Multipole
Method for Electromagnetics with Multiple Levels,
December 1994.

M.A. Epton and B Dembart. Low Frequency Multi-
pole Translation for the Helmholtz Equation, August
1994.

M.A. Epton and B Dembart. Multipole Translation
Theory for the 3-d Laplace and Helmholtz Equa-
tions. SIAM Journal of Scientific Computing, 16(4),
July 1995.

Guttman. R-Trees: a Dynamic Index Structure for
Spatial Searching. In Proceedings of ACM SIG-
MOID, June 1984.

Mary Hall, Peter Kogge, Jeff Koller, Pedro Di-
niz, Jacqueline Chame, Jeff Draper, Jeff LaCoss,
John Granacki, Apoorv Srivastava, William Athas,
Jay Brockman, Vincent Freeh, Joonseok Park, and
Jaewook Shin. Mapping Irregular Applications to
DIVA, A PIM-based Data-Intensive Architecture. In
Supercomputing, Portland, OR, November 1999.

Peter M. Kogge, Jay B. Brockman, and Vincent
Freeh. Processing-In-Memory Based Systems: Per-
formance Evaluation Considerations. In Workshop
on Performance Analysis and its Impact on Design
held in conjunction with ISCA, Barcelona, Spain,
June 27-28, 1998.

Peter M. Kogge, Jay B. Brockman, and Vincent W.
Freeh. PIM Architectures to Support Petaflops Level
Computation in the HTMT Machine. In 3rd In-
ternational Workshop on Innovative Architectures,
Maui High Performance Computer Center, Maui,
HI, November 1-3, 1999.

Banks Kornacker. High-Concurrency Locking in R-
Tree. In Proceedings of 21st International Confer-
ence on Very Large Data Bases, September 1995.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz. Smart memories: A modular reconfig-
urable architecture. ISCA, June 2000.

Richard C. Murphy. Design Parameters for Dis-
tributed PIM Memory Thesis. MS CSE Thesis, Uni-
versity of Notre Dame, April 2000.

[16] Richard C. Murphy, Peter M. Kogge, and Arun Ro-
drigues. The Characterization of Data Intensive
Memory Workloads on Distributed PIM Systems. In
Porceedings of the Second Workshop on Intelligent
Memory Systems, held in conjunction with ASPLOS-
IX, Cambridge, MA November 12-15, 2000.

[17] Notre Dame PIM Development Group. ASAP Prin-
ciples of Operation, February 2000.

[18] SPEC Open Systems Steering Committee. SPEC
Run and Reporting Rules for CPU95 Suites.
September 11, 1994.

[19] David Patterson, Thomans Anderson, Neal Card-
well, Richard Fromm, Kimberly Keeton, Christo-
foros Kozyrakis, Randi Thomas, and Katherine
Yelick. A Case for Intelligent DRAM: IRAM. IEEE

Micro, April, 1997.

[20] T. Sterling and L. Bergman. A design analysis of
a hybrid technology multithreaded architecture for
petaflops scale computation. In International Con-
ference on Supercomputing, Rhodes, Greece, June

20-25, 1999.

Sun Microsystems. Introduction to Shade, June

1997.

Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active Mes-
sages: a Mechanism for Integrated Communication
and Computation. In Proceedings of the 19th In-
ternational Symposium on Computer Architecture.
ACM Press, 1992.

YF]',F.

Proceedings of the Intemational Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA02)
1527-1366/02 $17.00 © 2002 IEEE

COMPUTER
SOCIETY

