
A Hardware Acceleration Unit for MPI Queue
Processing

Ron Brightwell, K. Scott Hemmert, Richard Murphy, Arun Rodrigues,
and Keith D. Underwood
Sandia National Laboratories

P.O. Box 5800
MS-1110

Albuquerque, NM 87185-1110
Email: rbbrigh, kshemme, rcmurph, afrodri, kdunder @sandia.gov

Abstract—With the heavy reliance of modern scientific
applications upon the MPI Standard, it has become critical
for the implementation of MPI to be as capable and
as fast as possible. This has led some of the fastest
modern networks to introduce the capability to offload
aspects of MPI processing to an embedded processor on
the network interface. With this important capability has
come significant performance implications. Most notably,
the time to process long queues of posted receives or
unexpected messages is substantially longer on embedded
processors. This paper presents an associative list matching
structure to accelerate the processing of moderate length
queues in MPI. Simulations are used to compare the
performance of an embedded processor augmented with
this capability to a baseline (embedded processor only)
implementation. The proposed enhancement significantly
reduces latency when queues grow to moderate length
while adding virtually no overhead for extremely short
queues.

I. INTRODUCTION
In the mid-1990’s, message passing became the

dominant mechanism for programming massively
parallel processor systems. By the late-1990’s, the
majority of message passing programs leveraged the
MPI Standard [1]. In the intervening years, billions
of dollars have been invested in developing applica-
tion codes using MPI. Thus, it has become critically
important to insure that new systems implement
MPI as efficiently as possible.
Many approaches have been taken to characteriz-

ing the efficiency of MPI. The most common (and

Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Department
of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

least useful) is to simply evaluate the ping-pong
latency and bandwidth of the network. While these
are necessary first order measures, models such as
LogP [2] (and the LogGP extension [3]) are much
more useful. Early work with these models [4] indi-
cated that the most important thing for applications
was to minimize the overhead (defined as the time
the application processor was involved in starting
or finishing the communication). As a result, some
of the highest performing networks have chosen to
offload much of the work of sending and receiving
MPI messages onto the network interfaces [5], [6],
[7].
Unfortunately, the second largest impact on appli-
cation performance is gap (effectively, the inverse
of the message rate). Recent work [8], [9] has
indicated that applications tend to traverse a signif-
icant number of entries in the two primary queues
managed by MPI: the posted receive queue and the
unexpected message queue. For networks that use
embedded processors to traverse these queues, time
spent traversing queues leads to an increase in gap.
Thus, a compromise has been made to decrease
overhead while sacrificing an increased gap in some
scenarios.
This paper proposes a unique hardware structure
to augment a traditional embedded microprocessor
to accelerate list traversal and matching. The pro-
posed hardware uses associative matching structures
similar in concept to those found in ternary content
addressable memories (TCAMs) to perform high-
performance parallel matching. These structures are
augmented with list management capabilities to sup-

port the unique combination of ordering semantics
and high list entry turnover needed to support MPI
point-to-point message passing semantics.
To better understand basic properties of the de-

sign, a prototype has been created in FPGA hard-
ware. The prototype provides an idea of both the
clock rates that can be achieved and the timing
that should be expected. It also serves as an av-
enue to explore and refine issues with the control
interface. Unfortunately, this implementation would
be difficult to integrate into a “real” environment.
Thus, system-level simulation was used to demon-
strate the usefulness of the proposed hardware. An
MPI implementation was created that leverages the
hardware acceleration unit. Using simulation, this
MPI implementation was compared to a baseline
implementation using only an embedded processor
with the same benchmarks discussed in [10].
The following section provides further back-

ground information on the semantics of MPI and
discusses other related research activities. The soft-
ware interface and hardware design are described
in Sections IV and III, respectively. The MPI im-
plementations and simulator are described in Sec-
tion V. The results from the comparison are pre-
sented in Section VI and conclusions are presented
in Section VII.

II. BACKGROUND
Conceptually, an MPI implementation has two

message queues — one that contains a list of out-
standing receive requests (the posted receive queue)
and one that contains a list of messages that have
arrived that do not match any previously posted
requests (the early arrival or unexpected queue). In-
coming messages traverse the posted receive queue
for a possible match and end up in the unexpected
queue if no match is found. Before a request can be
added to the posted receive queue, the unexpected
queue must be searched for a possible match. The
search of the unexpected queue to add an entry
to the posted receive queue must be an atomic
operation to insure that a matching message does
not arrive between the time the unexpected queue
is searched and the receive is posted.
MPI messages are matched using three fields:

context identifier, source rank, and message tag. The
context identifier represents an MPI communicator

object. This system-assigned message tag provides a
safe message passing context so that messages from
one context do not interfere with messages from
other contexts. The source rank represents the local
rank of the sending process within the communica-
tor, and the message tag is a user-assigned value that
can be used for further message selection within a
particular context. A posted receive must explicitly
match the context identifier, but may “wildcard” the
source rank and message tag values to match against
any value. In addition to the matching criteria,
MPI also mandates an ordering constraint. Messages
between two nodes in the same context must arrive
in the order in which the corresponding sends were
initiated.
All of the MPI implementations described in
published literature represent the posted receive
and unexpected queues as linear lists (all of these
implementations are based on either MPICH [11]
LAM [12], MPI/Pro [13], MPICH2 [14] or LA-
MPI [15]). Using this method, the time to tra-
verse these queues grows linearly with the length
of the list [10]. And, the length of the list can
grow linearly with the number of processes in the
parallel application [8], [9]. For some networks, the
time spent traversing an arbitrarily long queue may
impact the entire system, since the network interface
may be unable to service any other requests during
the search. This can lead to a situation where a
poorly written or erroneous application can affect
the performance of other applications in the system.
In order to reduce the search cost, approaches
using hash tables have been explored [7], [16]. Hash
tables can significantly reduce the time needed to
find a matching entry, but can also significantly
increase the time needed to insert an entry into the
list. Unfortunately, this increase in insertion time
has been prohibitive. The increase in insertion time
for a hash relative to a list is especially noticeable
in the zero-length ping-pong latency test by which
high-performance networks are judged. Hashing is
also complicated by the need to support wildcard
matching and maintain ordering semantics. Unfor-
tunately, an MPI implementation has no a priori
knowledge of whether wildcard values will be used,
so no application-specific approach can be taken.
The use of wildcard matching appears to be
widespread. An initial analysis of several applica-

tions at Sandia has revealed that a large number use
wildcards. The use of MPI ANY SOURCE, where
the source of the incoming message is not known,
is most prevalent. The use of MPI ANY TAG rarely
occurs, perhaps since message tags are intended to
be used for differentiating between specific types
of messages. Re-coding applications to eliminate
the use of source wildcards is non-trivial. The
semantic equivalent is to post a receive from every
possible source and then cancel those receives that
are unused. This strategy is an inefficient use of
processing and memory resources.
In this paper, we propose a hardware-based

scheme for a network interface to accelerate MPI
matching. Previous work has explored approaches
to using network interface hardware specifically
for MPI. The Quadrics QsNet [6] network has a
general-purpose processor on the network interface
that allows for running a user-context thread to
process incoming messages. This approach allows
much of the protocol processing needed to support
MPI to occur on the network interface. However,
the thread that implements MPI implements queues
as linear lists. The network interface for the San-
dia/Cray Red Storm machine [5] implements the
Portals [17] programming interface, which provides
protocol building blocks that support general net-
work functionality as well as MPI efficiently. How-
ever, Portals only allows for incoming messages
to traverse a linear list and there is no specific
hardware to accelerate matching. There is also a
significant amount of previous work on using the
network interface to implement MPI collective op-
erations efficiently [18], [19], [20]. Similarly, these
approaches focus on protocol optimizations and
efficient data movement operations rather than list
traversal.
The hardware acceleration that we explore in

this work is closely associated with the techniques
used to accelerate lookups in Internet Protocol (IP)
routers. IP routers need to efficiently solve the
longest prefix match (LPM) problem, where an
incoming packet needs to be routed to the network
that most closely matches its destination address.
As with wildcard values in MPI, network masks
can be used to cover an entire range of addresses.
For an IP router, an incoming message generates a
table lookup for the closest matching destination,

ultimately resulting in the selection of an outgoing
port. For MPI, an incoming message causes a table
lookup on the closest matching posted receive, re-
sulting in the selection of a destination buffer for
the message.
A variety of software and hardware approaches
have been explored to allow for quickly solving
the LPM problem (see [21] for a summary), but
none of them are appropriate for MPI for a number
of reasons. First, IP routers are expected to be
updated infrequently, so updating the list of possible
destinations can be a heavyweight operation. The
impact of this table maintenance is seen simply as
a “hiccup” in the network. For MPI, each posted
receive operation causes the table to be updated, so
the frequency of table updates is much much higher.
Secondly, there is no need to preserve ordering in
a router for IP packets. Packets will be routed to
the best matching network regardless of when the
destination was added to the table. For MPI, the
best match may not be the correct match when
ordering is considered. If an entry with a wildcard
source value is added before an entry with an
explicit source, the most exact match should not be
chosen. Additionally, the LPM problem assumes a
fixed ordering of bits where wildcards only occur
at the tail of the address being matched. This is, if
any portion of the address is wildcarded, all lower
order portions of the address are also wildcarded.
Given any fixed ordering of the context, source,
tag triplet, a field could be wildcarded in the
middle without lower order fields being wildcarded.
Finally, while the strategies for routing incoming IP
packets closely resemble those needed for matching
MPI posted receives, they do no match very well
with what is needed to handle unexpected message
lookups. Unexpected messages actually require a
reverse lookup, where a receive to be posted may
contain wildcard values that need to be compared
to a list of messages with explicit criteria that have
already arrived.

III. HARDWARE ACCELERATION UNIT

The proposed integration of the hardware in the
overall network interface chip (NIC) architecture is

FIFO
Rx DMA

Engine

Tx DMA
EngineFIFO

FIFO

FIFO

FIFO

FIFO

Associative

(Posted Recv)

List Processing
Unit

FIFO

FIFO

FIFO

FIFO
FIFO

Local
SRAM

To Network

DataNetwork
From

H
eader

Processor

Associative
List Processing

Unit
(Unex Msg)

To
 H

os
t M

em
or

y
H

ig
h

Pe
rf

or
m

an
ce

 C
on

ne
ct

io
n

Fig. 1. The proposed NIC architecture leveraging an associative list
matching unit (new features shown in dashed lines)

shown in Figure 11. A typical network interface has
send and receive (Tx and Rx) DMA capabilities,
shown logically separate here, coupled to the net-
work through logical FIFO interfaces that provide a
buffering capability. A processor with a local SRAM
manages transactions to and from the network and
various other housekeeping tasks through a local
bus. The proposed new components are shown with
dashed lines. To accelerate the posted receive queue,
copies of the header information are provided to the
associative list processing unit (ALPU) through an
added FIFO. A separate command and result FIFO
are also provided to enable decoupled, asynchronous
interactions with the processor. Similarly, copies of
new receives being posted are fed to an ALPU
that handles unexpected messages. The details of
the ALPU are shown in Figure 2. The hardware is
broken into three levels of hierarchy: the individual
cell, a block of cells, and the overall associative
matching unit.

A. Basic Matching Cell
At the lowest level, one of two individual cells

of the match unit is used. A single cell of the
match unit for the posted receive queue is shown
in Figure 2(a). The cell contains storage for both

1The prototype design only supports hardware acceleration for
a single process, but extending it to support a limited number of
processes is straightforward.

the set of bits being matched (the MPI matching
information) as well as a corresponding set of mask
bits (for wildcard bits within MPI). The set of match
bits can range from a pair of bits (one each for the
two fields in an MPI Irecv that can be wildcarded)
to a full width mask as is needed by the Portals
interface [17], [22], [23]. In addition, a valid bit,
indicating if the entry is valid, and a tag field, used
at the discretion of the software, are stored. In the
implementation used here, the tag value is a 20-bit
pointer into the local RAM that points directly to
the matching entry.
To provide matching for the unexpected message
queue, the cell is changed slightly, as shown in
Figure 2(b). Instead of storing the mask bits in each
cell, the mask bits are inputs. In all other respects,
the cells are the same. Stored data is passed from
one cell to the next. Compare logic (factoring in a
set of mask bits that indicate “don’t care” locations)
produces a single match bit. The basic cell then has
three additional outputs that feed into the higher
level block. The first is a single bit that is the logical
AND of the match bit and valid bit (invalid data
cannot produce a valid match). The second is the
tag which is muxed through priority logic to select
the right match. The final output is a valid bit to
allow the higher level block to manage flow control.

B. Block of Cells
At the next higher level (Figure 2(c)), a group
of cells is combined into a cell block. In addition
to a set of cells, the cell block contains a regis-
tered version of the incoming request (to facilitate
timing), logic to control the flow of data, logic to
correctly prioritize the tags, and logic to generate
a “match location”. The control flow logic drives
a separate enable signal to each cell. The transfer
of data from one cell to the next is enabled in
two scenarios: when a match occurs and when new
items are being inserted. On a successful match,
MPI semantics require that the matched item be
deleted; thus, the match location is broadcast to all
of the cell blocks. Cells at, and below, the match
location are enabled while cells above it are not,
effectively deleting the matched cell and leaving the
lowest priority cell empty.
During inserts, all cells are enabled if there is
space available above them to compact any possible

Cell
Previous

From {Next
To
Cell

M
as

k
B

its

M
at

ch
 B

its

Ta
g

V

Match

Request

To
Priority
Logic

{

Enable

{

C
om

pa
re

 L
og

ic

Cell
Previous

From {Next
To
Cell

M
at

ch
 B

its

Ta
g

V

Match

Request

To
Priority
Logic

{

Enable

{

C
om

pa
re

 L
og

ic

Mask

(a) (b)

n2 Cells

R
eq

ue
st

 R
eg

.

Request

From
Block
Previous

Block
Next
To

. . .

C
el

l

C
el

l

C
el

l

C
el

l

Available
Space

M
at

ch

Ta
g

M
at

ch
Ta

g

Ta
g

Delete/Enable Logic
Match Location

Insert Mode

Match Match

Ta
g

Cell Block

Cell Block

.

.

.

Cell Block

Cell Block

FIFO
Request

FI
FO

C
on

tro
l

Tag
Match

Address

Control Logic

Result
FIFO

(c) (d)
Fig. 2. (a) A cell containing a single match unit for the posted receive queue; (b) A cell containing a single match unit for the unexpected
message queue; (c) A block of cells; (d) The associative match engine

holes2. “Space available” is loosely defined. In the
implementation discussed here, “space available”
means that either a higher cell in the current block
or the lowest cell in the next block is empty. This is
to maximize clock frequency in the FPGA prototype
and is likely sufficient for all real cases. “Space
available” could easily be expanded to include any
cell in the next higher block or any cell in any higher
block if timing constraints permitted.
The number of cells in a cell block is restricted to

a power of 2 to simplify the task of prioritizing the
correct tag and generating a correct match location.

2Holes can occur during inserts if there is time between new
elements being inserted. Holes do not occur on deletion because all
data below the deletion point is shifted upward as part of the delete.

The prioritization logic uses the match signal to
select the “correct” tag for output. In Figure 2(c),
the highest order cell (furthest to the right) is
the highest priority. In explanation, MPI semantics
require that the first matching item in the list be
considered the “correct match”. In the associative
matching structure, list items are inserted from the
left and progress to the right. At the first level of
prioritization, the higher cell in each pair of cells
selects its tag if it matched and the partner tag if
it did not. The match bits are also encoded as the
lowest order bit of the “match location”. At the
second level, the logical OR of the highest order
pair of match bits forms the select line for the
mux and is encoded as the second lowest order

Match Read
Command

MDONE &

CMD_EF

Clear
Valid
Flags

INSERT or
STOP INSERT

Match
Insert

START
INSERT &

ReadCommand
InsertSTART

INSERT &
CMD_EF

Insert

CommandRead
Wait Insert

RESET

CMD_EF
CMD_EF

CMD_EF

STOP INSERT
INSERT

CMD_EF

MATCH FAIL

STOP INSERT

INSERT

CMD_EF

Fig. 3. The controlling state machine

bit of the match location (not shown in figure).
This pattern continues through levels of muxing
for cells. The result is output as the highest
order matching tag along with the encoded match
location. Obviously, this muxing structure could
easily be collapsed with 4-to-1 or even larger muxes,
but 2-to-1 muxes improved placement regularity in
the FPGA prototype.

C. Associative List Processing Unit
An associative list processing unit (ALPU) chains

several cell blocks together and adds control logic
to interface to the rest of the network interface.
The cell block outputs are combined and prioritized
in the same manner as cell outputs are combined
in the cell block. Effectively, several cell blocks
are combined to create one large, virtual array of
cells. The modularization into cell blocks simplifies
timing (particularly for the compaction logic) and
simplifies the exploration of the design space.
The control logic in the highest level controls the

interaction with the rest of the NIC. This control
logic determines when new data is taken from the
header input, when matches begin, when data is
written to the output, when data is read from the
control input, and how much space is available in
the ALPU. The governing state machine is shown
in Figure 3. The state machine begins in the Match
state. In the Match state, the ALPU accepts a
new match each time a match completes. Successful
or failed matches are output to the result FIFO.

If a new command arrives (the command FIFO
becomes not empty), then at the completion of the
current match, the state machine enters the Read
Command state. At this point, only the RESET and
START INSERT commands are valid 3. A RESET
clears all of the valid flags and returns to the match-
ing state. A START INSERT puts the device into
insert mode. Insert mode implies a change in the
matching behavior — insert commands are accepted
and matching continues until a match fails. Matches
are stopped temporarily for each insert (to maintain
correctness), but it is likely that the processor cannot
fill the command FIFO as quickly as the ALPU can
drain it; thus, between inserts, matches are allowed
to continue. Successful matches are output to the
result FIFO and failed matches are held for a retry.
This is described in further detail in Section IV. A
STOP INSERT command returns the operation to
the standard match mode.

IV. SOFTWARE INTERFACE
Referencing Figure 1 provides insight into how
the proposed hardware fits into the overall software
architecture. In a traditional NIC (e.g. the Red
Storm system), the header and data are separated
(logically, if not physically). The processor performs
list matching functions using the header informa-
tion and instructs the DMA. With the proposed
hardware, header data would be replicated to the
associative list processing unit. The purpose of the
ALPU is to quickly provide an index into the match
list if a match occurs. If a match does not occur,
the processor needs to decide what to do with the
non-matching message (described later); thus, the
processor also receives a copy of all of the header
information. In general, the purpose of each of the
FIFOs is to provide hardware level decoupling to
enable asynchronous operation.

A. Processor Interface
The ALPU requires a very limited set of com-
mands (see Table I). A pair of commands (START
INSERT and STOP INSERT) are used to instruct
the ALPU to enter and exit insert mode (the mode
that is safe for inserts). RESET is used to clear the
ALPU and INSERT is used to insert new items.
3Other commands are discarded and an empty command FIFO
before a valid command causes a transition back to the match state.

TABLE I
ASSOCIATIVE LIST PROCESSING UNIT COMMAND SET

Command Description Inputs
START INSERT Instruct the ALPU to enter insert mode None
INSERT Insert a new entry in the ALPU Match bits, Mask bits (optional), and tag

STOP INSERT Instruct the ALPU to exit insert mode None
RESET Clear all entries in the ALPU None

Only the INSERT has parameters: the match bits to
be used, the mask bits if needed, and a user defined
tag.
The responses expected from the ALPU are

shown in Table II. The START ACKNOWLEDGE is
returned in the response to a START INSERT com-
mand and indicates the number of free slots in the
ALPU. MATCH SUCCESS and MATCH FAILURE
are the responses that are expected in normal ALPU
operation. General operation of the device proceeds
as follows. A START INSERT and its response
(START ACKNOWLEDGE) must occur before an
INSERT can be performed. Inserts may then be per-
formed until a STOP INSERT. MATCH SUCCESS
can occur at any time, but MATCH FAILURE can-
not occur between a START ACKNOWLEDGE and
a STOP INSERT.

B. Overall List Management
To manage MPI queues using an ALPU, a micro-

processor must develop an appropriate set of heuris-
tics. As previously shown [8], [9], these queues can
grow to tens or hundreds of items; however, at times,
the queues can also be quite short. Because using
the ALPU will incur a certain amount of overhead,
the software must only use it when the queue is
adequately long. In addition, the software must
recognize that inserting elements into the ALPU
requires a certain overhead and should attempt to
conglomerate insertions into the list.
Even though the ALPU will be used for au-

tomated high-performance matching, the processor
should maintain a copy of each list. The copy of
the list allows the ALPU to return a simple pointer
to a list entry, instead of the entire entry. As entries
are matched (and, thus, deleted in the ALPU), the
processor’s copy of the entry must also be deleted.
Furthermore, the processor may have entries that
have not yet been entered into the ALPU. A pointer

to the start of the portion of the list that has not been
entered into the ALPU should also be maintained
for proper handling of responses (discussed further
in Section IV-D).

C. Match Entry Insertion

When the hardware is initialized, the ALPU is
empty. Matching is enabled, but no matches will
succeed; thus, the hardware should be designed
such that the processor can disable the delivery
of duplicate information (headers or new posted
receives) to the ALPU until it is initialized. As new
entries for the queue arrive (new posted receives or
unexpected messages), the processor should begin
to build the appropriate queue in memory. When
the queue length crosses a threshold (defined by
heuristics to enable the best overall performance),
the processor sends a START INSERT command
to the ALPU. To avoid a potential race condition
where the a match in the pipeline fails while the pro-
cessor is performing an insert4, the processor must
wait for an INSERT ACKNOWLEDGE response. In
response to the START INSERT command, the
ALPU enters a safe state where matches can occur,
but matches that fail are held for retry until after all
inserts complete.
While waiting for the INSERT ACKNOWLEDGE,
the processor may receive one or more MATCH
SUCCESS or MATCH FAILED responses. These
must be handled correctly as described in the next
section. The INSERT ACKNOWLEDGE will include
a field indicating to the processor the number of
entries it is safe to insert. In an optimal imple-
mentation, the processor will also track this number
to insure that it does not attempt to start inserting
when little or no space is available. Having received
the INSERT ACKNOWLEDGE, the processor should

4Inserts are irrevocable.

TABLE II
ASSOCIATIVE LIST PROCESSING UNIT RESPONSES

Response Description Outputs
START ACKNOWLEDGE ALPU has entered insert mode Number of free entries
MATCH SUCCESS Input matched list item Tag from list item matched
MATCH FAILURE Input did not match list item None

perform the desired number of inserts as quickly as
possible and then send a STOP INSERT command.
If the number of inserts to be performed is large, the
processor may need to periodically clear the result
FIFO of successful matches that occur during the
insert process to prevent it from filling. Each insert
includes the information to be matched, optionally
a set of mask bits (for posted receives), and a tag.
The tag can be any value and will be returned on
a successful match; however, the recommended use
is to store a pointer to the position in local RAM
where the corresponding queue entry is stored.

D. Result Handling

If the ALPU is in use, the processor must retrieve
a response from the ALPU for every header that is
received. Thus, the processor should first retrieve
the copy of the data provided to it and then retrieve
the response. The response will either be a MATCH
SUCCESS or a MATCH FAILED. On a success, the
returned tag can be used to point directly to the
matching list item in the processor’s copy of the
list. On a failed match, the processor must use the
local copy of the data and search the portion of the
list that has not yet been loaded into the ALPU. If
there is still no match, the data must be handled
correctly. If the data is a header that did not match
an item in the posted receive queue, it should be
inserted into the unexpected message queue. If the
data is a new posted receive that did not match an
item in the unexpected message queue, it needs to
be added to the posted receive queue.

V. METHODOLOGY

There were four aspects of this research. The
first was a benchmark that exposed a significant
problem on modern network interfaces cards (NICs)
that leverage embedded processors. The behavior
was replicated using a simulation environment that

reproduces a modern system environment and pro-
vides a platform for research into potential NIC
improvements. The simulated NIC was enhanced
with the proposed associative list processing unit
(ALPU) and the MPI implementation was modified
to leverage the feature. Finally, an independent
hardware prototype was created to provide insight
into the performance of the proposed design.

A. Benchmarks

The primary motivation for this design was to
reduce the latency of messages when long posted
receive queues or long unexpected message queues
were present. The magnitude of the problem was
revealed in an earlier study [10] using two newly
designed benchmarks. These benchmarks are used
again here to study the impacts of the associative
list processing unit.
The benchmark designed to measure the impact
of changes in the pre-posted receive queue length
provides three degrees of freedom: the length of
the pre-posted receive queue, the portion of the pre-
posted receive queue that is traversed, and the size
of the message. This enables the user to measure
the impacts of both the receive queue length and
the impact of actual queue traversal.
The benchmark created to assess the impact of
unexpected message queue length on message la-
tency only allows the length of the unexpected
message queue and the size of the message to
be varied. It deviates from the traditional way of
measuring latency in that it includes the time to
post the receive for the latency measuring message
as part of the latency. This better reflects the way
that MPI is actually used by applications, which
typically have some number of iterations and post
receives in each iteration.

B. Simulation Environment

System-level simulation of the matching struc-
ture used a simulator based on Enkidu [24], a
component-based discrete event simulation frame-
work. To simulate the CPU and NIC processors,
sim-outorder from the SimpleScalar [25] tool
suite was integrated into this framework. Compo-
nents representing a simple network, DMA engines,
a memory controller, and DRAM chips were added.
The memory hierarchy was modeled to include
contention for open rows on the DRAM chips.
The main processor was parameterized to be

similar to a modern high-performance processor,
such as an AMD Opteron. The NIC processor was
parameterized to be similar to a processor in higher
end network cards, such as the PowerPC 440 (see
table III). A simple bus on the NIC connected the
main processor with the DMA engine, SRAM, and
matching structure. This bus was simulated with a
20ns delay.

TABLE III
PROCESSOR SIMULATION PARAMETERS

Parameter CPU NIC Processor
Fetch Q 4 2
Issue Width 8 4
Commit Width 4 4
RUU Size 64 16
Integer Units 4 2
Memory Ports 3 1
L1 Caches 64K 2-way 32K 64-way
L2 Cache 512K none
Clock Speed 2Ghz 500Mhz
Lat. To Main Memory 85-90 cycles 30-32 cycles
ISA PowerPC PowerPC
Network Wire Lat. 200 ns

C. MPI Implementations

The prototype MPI implements a subset of MPI-
1.2 [1]. With the exception of MPI Barrier(),
only basic point-to-point communication and ba-
sic support functions were implemented(Figure 4).
Only support for basic MPI Datatypes is included
and MPI COMM WORLD, is the only group. The MPI
was implemented in roughly 1600 lines of C++ and
compiled with GNU g++ 3.35.

5gcc version 3.3 20030304 (Apple Computer, Inc. build 1495)

MPI Comm rank()
MPI Comm size()
MPI Finalize()
MPI Init()
MPI Irecv()
MPI Barrier()

MPI Isend()
MPI Recv()
MPI Send()
MPI Wait()

MPI WaitAll()

Fig. 4. Subset of MPI implemented. indicates functions which are
built from other MPI functions.

The primary data structures are a series of linked
lists to contain requests and the state required to
advance them.
postedRecvQ: Posted receive buffers for in-
coming messages to match against.
activeRecvQ: Active receive requests which
require processing (i.e. rendezvous requests
which must send a reply, requests waiting for
a DMA engine, etc.)
unexpectedQ: List of unexpected messages
which have arrived. Used by receive to match
against.
unexpectedActiveQ: Active unexpected
messages which must be advanced (i.e. unex-
pected messages requiring DMA transfer).
sendQ: Queue message send requests for pro-
cessing.

All of these primary data structures reside in the
NIC memory. Almost all processing occurs on the
NIC. The main processor is only required to dis-
patch message requests to the NIC and wait for
request completion.
The NIC continually executes a loop that per-
forms four actions: checking the network for new
incoming messages; checking for any new requests
from the main processor; advancing active requests;
and updating the ALPU. The network is polled
for new incoming messages. If a new message
is detected, the message headers are stripped off
and compared against posted receive buffers. If a
match is found, the receive request is moved to
the active list so it can set up a DMA or send a
rendezvous reply. If no match is found, the message
is entered on the unexpectedQ, to be matched
against future receives. Active send requests are
advanced by allocating network and DMA resources
and performing the send. Once the send is com-

pleted, resources are freed. Receive requests first
try to match against the unexpectedQ to see if
their message has already arrived. If no match is
found, they are added the the postedRecvQwhere
they await an incoming header to match. When they
are matched, they can perform any required DMA
transfers before informing the main processor of
their completion.
Use of the ALPU requires minimal modifica-

tion of this basic structure. Each iteration of the
NIC’s loop updates the posted receive ALPU and
the unexpected ALPU. A pointer is kept to in-
dicate which portions of the postedRecvQ and
unexpectedQ have been transfered to the ALPU
and which have not. If there are portions of these
lists that have not yet been added to the ALPU,
the NIC will attempt to insert them. The NIC sends
a START INSERT message, and then drains the
ALPU’s result FIFO of any match results until
a START ACKNOWLEDGE is received. It then at-
tempts to insert as many of the remaining headers
as it can, updating the pointer to indicate which
portions of the queue have been inserted. After the
inserts, it will send a STOP INSERT command.
When new incoming messages arrive, their head-

ers are automatically sent to the ALPU. When
the NIC detects these messages, it checks the
ALPU’s output queue to see if it has matched. If
it does, the relevant request is removed from the
postedRecvQ. If no match is found, the portion
of the postedRecvQ that is not on the ALPU
is checked. If no match is found, the message
headers are added to the unexpectedQ and will
be inserted into the widget.
Similarly, when receive requests arrive, the un-

expected ALPU is checked to see if a match has
occurred. If the widget returns MATCH FAILURE,
any portion of the unexpectedQ not on the ALPU
is checked.

D. FPGA Prototype

To provide a reasonable estimate of the size
and operating frequency of the ALPU, a prototype
implementation was created, targeting Xilinx Virtex
2 and Virtex 2 Pro FPGAs. The ALPU was de-
signed using JHDL [26], a structural design tool that
provides fine-grained control over the placement of

logic on the FPGA. The final design is parameter-
ized to allow different match and tag widths, as
well as different combinations of the total number
of cells and the number of cells in each block.
When designing the unit, the top priorities were
small area, high speed and regularity in placement.
The regular placement constraint arose from the
need to create a placement scheme that was pro-
gramatically adaptable to different combinations of
match and tag widths. To allow for higher oper-
ating frequencies, the ALPU has been pipelined.
The pipelining used in the design does not allow
execution overlap, and the final implementations can
process a new match every 6 or 7 clock cycles
(depending on the total number of cells in the ALPU
and the block size). The pipeline stages are broken
down as follows:
1) Fanout global signals to the blocks of cells;
each block registers its own copy of these
signals.

2) Produce a match or not match for each cell.
3) Perform the priority muxing within each
block.

4) Perform the prioriry muxing between blocks
to determine if there was a match. If a
match was found, this stage also produces the
matched tag and the address of the highest
priority cell that matched. This stage is either
one or two cycles, depending on the circuit
parameters.

5) Fanout the delete signals. Again, each block
registers its own copy of these signals.

6) Delete the matched cell.
If desired, it is possible to overlap execution of
the first and last stages (i.e., new match data can
be distributed to the blocks while the last match
is being deleted). The simulation results assume a
7 cycle pipelining latency with no overlap of exe-
cution. The current pipelining scheme also allows
inserts to happen on every other clock cycle.

VI. RESULTS
Three sets of experiments were performed. The
first was an FPGA-based prototype used to explore
size and performance issues of the design. The
second experiment simulated the performance of a
NIC with and without the associative list processing
unit (ALPU) for the posted receive queue. In the

final experiment, the ALPU was applied to the
management of the unexpected message queue. Re-
sults from these experiments indicate that the ALPU
is small and fast enough, and provides sufficient
benefits to be practical.

A. FPGA Prototype
This section details the sizes and speeds of the

ALPU prototypes. Prototypes for list units acceler-
ating both posted receives and unexpected messages
were created. The Xilinx FPGA tool chain was used
to map the prototypes to a Virtex-II Pro 100 FPGA
with a -5 speed grade6. We chose to test units with
both 256 and 128 total cells, with block sizes of
8, 16, and 32. For each test, the match width was
set to 42 and the tag width was 16. These widths
are adequate to support an MPI implementation
supporting the full specification on a 32K node
system. In addition, there is a mask bit for every
match bit7.
The sizes and speeds of the prototypes are found

in Tables IV and V. The size and speed numbers
were taken from the reports generated by the Xilinx
tools. The sizes include the number of 4-input
lookup tables (LUTs), the number of flip flops
(FFs), as well as the number of slices8. The speeds
were obtained by constraining the clock to 9ns.
Therefore, the prototypes with block sizes of 8 and
16 will likely run at even higher frequencies.

TABLE IV
SIZES AND SPEEDS OF THE POSTED RECEIVES ALPU

PROTOTYPES.

Total Block Size Speed
Cells Size LUTs FFs Slices (MHz) Latency

8 17,372 28,908 15,766 112.5 7
256 16 17,573 27,656 15,090 111.4 7

32 18,054 26,971 14,742 100.2 6
8 8,687 14,562 7,945 111.5 7

128 16 8,786 13,897 7,606 112.1 6
32 9.025 13,605 7,431 100.6 6

6This is a 0.13 micron design. For reference, two faster speed
grades are currently available on the same process technology.
7Providing a mask bit for every match bit allows maximum

configurability and supports protocols beyond MPI, such as Portals.
Thus, this configuration is the “worst case” size and speed for a real
implementation.
8A slice consists of two LUTs and two FFs and a small number

of dedicated logic units, but frequently cannot be used this densely.

TABLE V
SIZES AND SPEEDS OF THE UNEXPECTEDMESSAGES ALPU

PROTOTYPES.

Total Block Size Speed
Cells Size LUTs FFs Slices (MHz) Latency

8 17,339 19,414 11,562 112.1 7
256 16 17,556 17,490 10,631 111.9 7

32 18,045 16,469 10,350 100.9 6
8 8,672 9,773 5,806 111.2 7

128 16 8,777 8,771 5,356 112.1 6
32 9,020 8,311 5,215 100.6 6

Though the ALPU is quite large in an FPGA (the
256-entry posted receive ALPUs consume approx-
imately 35% of the FPGA), as an ASIC, the size
would be similar to that of commercially available
ternary CAMs. We also estimate that the move to
standard cell ASIC technology would provide a 9

increase in clock frequency. This means that the
prototypes would all run at about 500MHz; this
is equivalent to the core logic speed in the ASC
Red Storm network interface[5]. The implied size
and speed of the ALPU in an ASIC makes it a
good candidate for addition into a network interface
offload engine.

B. Preposted Latency Impacts
Figure 5 compares the performance of a baseline
NIC (similar in nature to what will be in the Red
Storm system) to the same NIC enhanced with a
128-entry ALPU and a 256-entry ALPU. On the
left, the full 3D surface is shown for each configu-
ration while the right shows projections of several
of the lines on a 2D graph. The graphs have some
interesting traits. For the baseline NIC (parts (a) and
(b)), the low end of the graph shows each entry
traversed adding an average of 15 ns of latency.
By comparison, for a Quadrics Elan4 NIC, each
entry traversed adds 150 ns of latency. The
performance improvement is not surprising because
the NIC being modeled has a significantly faster
clock (), is dual issue (for integers, floating-
point does not get used), and has separate 32 KB
instruction and data caches. When the queue is too
long to fit in cache, the average time per entry
traversed grows to 64 ns. This overhead shows

9A increase from FPGA to standard cell ASIC is an extremely
conservative estimate. It would likely be larger.

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
10
20
30
40
50
60
70

Latency (microseconds)

1

10

100

0 20 40 60 80 100

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Percentage of Queue Traversed

0 Preposted Receives
20 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

(a) (b)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
10
20
30
40
50
60
70

Latency (microseconds)

1

10

100

0 20 40 60 80 100

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Percentage of Queue Traversed

0 Preposted Receives
20 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

(c) (d)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
10
20
30
40
50
60
70

Latency (microseconds)

1

10

100

0 20 40 60 80 100

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Percentage of Queue Traversed

0 Preposted Receives
20 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

(e) (f)
Fig. 5. (a) & (b) Growth of latency with standard posted receive queue; (c) & (d) Growth of latency using a 128-entry ALPU to manage
posted receive queue; (e) & (f)Growth of latency using a 256-entry ALPU to manage posted receive queue

1

10

100

0 100 200 300 400 500 600 700 800 900

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Unexpected Messages

Baseline
128 Entry ALPU
256 Entry ALPU

Fig. 6. Growth of latency with unexpected queue length

up even when the entire list is not traversed. For
example, the time to traverse an entire 400-entry list
is and the time to traverse 80% of a 500-entry
list is .

Incorporating an ALPU yields two significant ad-
vantages, as shown in Figure 5. The most dramatic
advantage is a flat latency curve until the length
of the posted receive queue crosses the size of the
ALPU. The penalty is an 80 ns increase in the
baseline latency (zero-length posted receive queues)
as the processor incurs overhead from being forced
to interact with the ALPU. With 5 entries in the
posted receive queue, the ALPU breaks even. Thus,
it is entirely possible that the MPI library could
be optimized to not use the ALPU until the list
is at least 5 entries long. The second advantage
provided by the ALPU is the reduction in the usage
of the cache. By using the ALPU, the processor
is not required to traverse the first entries of the
queue, even if the ALPU does not find a match. The
storage required by the ALPU is relatively small
(the entire queue entry does not have to be stored).
Each entry in the ALPU contains matching data
only, but the processor stores several other pieces of
data in the queue entry. Thus, the number of cache
lines the processor must retrieve from memory is
dramatically reduced if it does not have to search
the first several entries.

C. Unexpected Message Impacts
In contrast to the impacts on the preposted queue,
the measurements show no advantage from the
ALPU for applications that have extremely short
unexpected message queues. Indeed, with short un-
expected message queues, the ALPU appears to
show a small loss in latency performance (a few tens
of nanoseconds). As can be seen in Figure 6, after
the unexpected queue reaches a length of 70 entries,
the ALPU begins to offer a clear and significant
advantage. An interesting phenomenon is seen in
each line: as the cache on the processor in the NIC
is exhausted, the latency rises more dramatically.
This mirrors the behavior seen in the management
of the preposted queue, and, again, the ALPU is
able to delay the point at which this rapid growth
in latency occurs.
What is missing in these graphs is the real ad-
vantage of the ALPU. The benchmark is written
as conservatively as possible while still attempting
to demonstrate the limitations of a long unexpected
queue. Thus, the time to post a receive is allowed
to be overlapped with the time to transfer the
messages. In real life, a long posted receive queue
is created by pre-posting several receives consec-
utively (without matches arriving). Each receive
would take progressively longer and would impact
the application execution time directly. In such a
case, the ALPU would offer a much greater benefit.

VII. CONCLUSIONS
Both the posted receive queue and the unexpected
message queue can be significant bottlenecks in the
processing of MPI messages. This paper presents a
novel feature to be integrated in a network interface
to accelerate the processing of both of these critical
queues in MPI. The associative list processing unit
(ALPU) was prototyped in an FPGA and was found
to be small enough and fast enough to be integrated
in a modern network interface.
To assess the performance impact of the proposed
accelerator, a system simulator was used to simulate
a baseline NIC as well as a NIC enhanced with the
proposed feature. The addition of the ALPU was
found to add minimal overhead, even when used on
extremely short queues. As the queue length grew,
the addition of the ALPU demonstrated dramatic
drops in impacts of queue length on latency. Even

when the queue length grows beyond the size of the
ALPU, the addition of the ALPU is an inexpensive
way to decrease the pressure on the cache for the
processor in the NIC.

VIII. FUTURE WORK

The optimization of MPI is a broad and ongo-
ing effort. Focus areas include other optimzation
techniques to further accelerate queue traversal and
techniques to traverse queues quickly with fewer
hardware resources. Another area of research will
focus on how to offload significant portions of the
Portals interface to enable support of MPI, run-time
software, and I/O.

REFERENCES

[1] Message Passing Interface Forum, “MPI: A message-passing
interface standard,” The International Journal of Supercomputer
Applications and High Performance Computing, vol. 8, 1994.

[2] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken,
“LogP: Towards a realistic model of parallel computation,” in
Proceedings 4th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1993, pp. 1–12.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Sheiman,
“LogGP: Incorporating long messages into the LogP model,”
Journal of Parallel and Distributed Computing, vol. 44, no. 1,
pp. 71–79, 1997.

[4] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson,
“Effects of communication latency, overhead, and bandwidth
in a cluster architecture,” in Proceedings of the 24th Annual
International Symposium on Computer Architecture, June 1997.

[5] R. Alverson, “Red Storm,” in Invited Talk, Hot Interconnects
10, August 2003.

[6] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg, “The Quadrics network: High-performance clustering
technology,” IEEE Micro, vol. 22, no. 1, pp. 46–57, Jan-
uary/February 2002.

[7] Myricom, Inc., “Myrinet Express (MX): A high performance,
low-level, message-passing interface for Myrinet,” July 2003.
[Online]. Available: http://www.myri.com/scs/MX/doc/mx.pdf

[8] R. Brightwell and K. D. Underwood, “An analysis of NIC
resource usage for offloading MPI,” in Proceedings of the 2002
Workshop on Communication Architecture for Clusters, Santa
Fe, NM, April 2004.

[9] R. Brightwell, S. Goudy, and K. D. Underwood, “A
preliminary analysis of the MPI queue characteritics of several
applications,” submitted, May 2004. [Online]. Available:
ftp://ftp.cs.sandia.gov/pub/papers/bright/mpi-queue-apps.pdf

[10] K. D. Underwood and R. Brightwell, “The impact of MPI queue
usage on message latency,” in Proceedings of the International
Conference on Parallel Processing (ICPP), Montreal, Canada,
August 2004.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-
performance, portable implementation of the MPI message
passing interface standard,” Parallel Computing, vol. 22, no. 6,
pp. 789–828, September 1996.

[12] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster
Environment for MPI,” in Proceedings of Supercomputing
Symposium, 1994, pp. 379–386. [Online]. Available:
http://www.lam-mpi.org/download/files/lam-papers.tar.gz

[13] R. Dimitrov and A. Skjellum, “An efficient MPI implementation
for Virtual Interface (VI) Architecture-enabled cluster comput-
ing,” in Proceedings of the Third MPI Developers’ and Users’
Conference, March 1999, pp. 15–24.

[14] W. Gropp, “MPICH2: A new start for MPI implementations,”
in Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 9th European PVM/MPI Users’ Group Meet-
ing, Linz, Austria, ser. Lecture Notes in Computer Science,
D. Kranzlmuller, P. Kacsuk, J. Dongarra, and J. Volkert, Eds.,
vol. 2474. Springer-Verlag, September/October 2002.

[15] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G.
Minnich, C. E. Rasmussen, L. D. Risinger, and M. W. Sukalski,
“A network-failure-tolerant message-passing system for teras-
cale clusters,” International Journal of Parallel Programming,
vol. 31, no. 4, pp. 285–303, August 2003.

[16] P. Shivam, P. Wyckoff, and D. Panda, “EMP: Zero-copy OS-
bypass NIC-driven gigabit ethernet message passing,” in Pro-
ceedings of the 2001 Conference on Supercomputing, Nov.
2001.

[17] R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen, “Por-
tals 3.0: Protocol building blocks for low overhead communica-
tion,” in Proceedings of the 2002 Workshop on Communication
Architecture for Clusters, April 2002.

[18] D. Buntinas, D. K. Panda, and P. Sadayappan, “Fast NIC-based
barrier over Myrinet/GM,” in Proceedings of the International
Parallel and Distributed Processing Symposium, April 2001.

[19] D. Buntinas and D. K. Panda, “NIC-based reduction in Myrinet
clusters: Is it beneficial?” in Proceedings of the SAN-02 Work-
shop (in conjunction with HPCA), February 2002.

[20] A. Moody, J. Fernandez, F. Petrini, and D. K. Panda, “Scalable
NIC-based reduction on large-scale clusters,” in Proceedings of
the ACM/IEEE SC2003 Conference, November 2003.

[21] B. Plattner, G. Varghese, J. Turner, and
M. Waldvogel, “Scalable high-speed prefix
matching,” February 2002. [Online]. Available:
http://marcel.wanda.ch/Publications/waldvogel01scalable.pdf

[22] R. Brightwell, T. B. Hudson, A. B. Maccabe, and R. E. Riesen,
“The Portals 3.0 message passing interface,” Sandia National
Laboratories, Tech. Rep. SAND99-2959, December 1999.

[23] R. Brightwell, A. B. Maccabe, and R. Riesen, “Design, imple-
mentation, and performance of MPI on Portals 3.0,” Interna-
tional Journal of High Performance Computing Applications,
vol. 17, no. 1, pp. 7–20, Spring 2003.

[24] A. Rodrigues, “Enkidu discrete event simulation framework,”
University of Notre Dame, Tech. Rep. TR04-14, 2004.

[25] D. Burger and T. Austin, The SimpleScalar Tool Set, Version
2.0, SimpleScalar LLC.

[26] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson,
and M. Rytting, “A CAD suite for high-performance FPGA
design,” in Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, K. L. Pocek and J. M. Arnold,
Eds., IEEE Computer Society. Napa, CA: IEEE, April 1999,
pp. 12–24.

