
On The Path to Exascale
	

Ken Alvin*, Brian Barrett*, Ron Brightwell*, Sudip Dosanjh*, Al Geist°, Scott Hemmert*,

Michael Heroux*, Doug Kothe°, Richard Murphy*, Jeff Nichols°, Ron Oldfield*, Arun
Rodrigues*, Jeffrey S. Vetter°

*Sandia National Laboratories1, °Oak Ridge National Laboratory, USA
	
	
	
ABSTRACT
There is considerable interest in achieving a 1000 fold increase in supercomputing power in the
next decade, but the challenges are formidable. This paper discusses some of the driving science
and security applications that require exascale computing (a million, trillion operations per
second). Key architectural challenges include power, memory, interconnection networks and
resilience. The paper summarizes ongoing research aimed at overcoming these hurdles. Topics of
interest are architecture aware and scalable algorithms, system simulation, 3D integration, new
approaches to system-directed resilience and new benchmarks. Although significant progress is
being made a broader international program is needed.

Keywords: Architectural Features, Architecture Types, Computer Architecture, Computer Size,
Networking Technology, Processor Architecture, Supercomputers, Operating Systems.

INTRODUCTION

In 1997 Intel's ASCI Red broke the Teraflops barrier, achieving over 1 trillion floating point
operations per second (Heermann, 1998). Last year both IBM's Roadrunner and Cray's Jaguar
system surpassed 1 PetaFLOPS or 1,000 TeraFLOPS (Feldman, 2008). The next factor of 1000
improvement in supercomputing performance (Exascale) will be even more challenging. The
primary driver for the architectural change underway is that clock speeds are increasingly
constrained by power and cooling limits. All of the major chip manufactures are moving to
multicore architectures, which results in the addition of hierarchical parallelism to
supercomputers. Oak Ridge National Laboratory's Cray Jaguar system has 18,688 nodes, each
comprised of two quad core AMD Opterons. Roadrunner is a one of a kind supercomputer
composed of 6480 dual core AMD Opterons, each connected to two IBM PowerXCell 8i
processors, which are similar to the processor used in Sony’s Playstation 3 (Kahle, 2005). Both
of these systems demonstrate that the transition to multicore is already a key design challenge for
supercomputer architectures.

The memory wall is defined as the mismatch between CPU and memory performance
(latency, chip I/O capabilities, etc.), and will continue to plague processor design. Today’s
																																																													

1	Sandia	is	a	multiprogram	laboratory	operated	by	Sandia	Corporation,	a	Lockheed	Martin	
Company,	for	the	United	States	Department	of	Energy's	National	Nuclear	Security	
Administration	under	contract	DE-AC04-94AL85000.	

applications are primarily limited by data movement, represented by the statement “FLOPS are
free” (Shiva, 2005). Power budgets continue to increase, which will result in power requirements
in excess of 100 MW if existing petascale design methodologies are used for such a system. It is
unlikely that such a system would be built unless power demands can be decreased significantly.
Additionally, resilience will limit the availability of such systems. The current method for
recovering from faults is checkpointing – at various times during a calculation a restart file is
written to disk. Given weak scaling, I/O bandwidth requirements scale with the memory size and
inversely with the mean time between interrupts (which decreases with increasing parts counts).
Since exascale will require millions of nodes, the mean time between interrupts will decrease and
checkpointing will become an impractical mechanism for fault recovery.

These challenges require new approaches to applications, algorithms, system software, and
computer architecture, which has been noted by the numerous workshops and reports devoted to
the problem (Kogge et al., 2008; Simon et al., 2007). The remainder of the paper discusses
science and security applications that require exascale computing, architectural challenges, and
ongoing work aimed at overcoming some of these obstacles.

APPLICATIONS
Scientific computing is essential to the advancement of numerous fields of study. Never before
have we been able to accurately anticipate, analyze, and plan for complex events that have not
occurred—from the operation of a reactor running at 100 million degrees to future changes in
climate. Combined with the more traditional approaches of theory and experiment, scientific
computing provides a profound tool for insight as we look at complex systems containing
billions of components.
Science
Key areas of scientific research, including materials science, Earth science, energy assurance,
fundamental science, biology and medicine, engineering design, and security can benefit from
continued growth in high performance computing (to exascale and beyond). Table 1 summarizes
scientific opportunities that can be enabled by exascale computing, key application areas, and the
goals and associated benefits.

TABLE 1: THE PROMISE OF EXASCALE COMPUTING

Opportunity Key application areas Goal and benefit

Materials
science

Nanoscale science; material lifecycles,
response and failure; and manufacturing

Design, characterize, and manufacture materials,
down to the nanoscale, tailored and optimized for
specific applications

Earth science Weather, carbon management, climate
change mitigation and adaptation,
environment

Understand the complex biogeochemical cycles that
underpin global ecosystems and control the
sustainability of life on Earth

Energy
assurance

Fossil, fusion, combustion, nuclear fuel
cycle, chemical catalysis, renewables
(wind, solar, hydro), bioenergy, energy
efficiency, energy storage and transmission,
transportation, buildings

Attain, without costly disruption, the energy
required for economically viable, and
environmentally benign ways to satisfy residential,
commercial, and transportation requirements

Fundamental
science

High energy physics, nuclear physics,
astrophysics, accelerator physics

Decipher and comprehend the core laws governing
the universe and unravel its origins

Biology and Proteomics, drug design, systems biology Understand connections from individual proteins
through whole cells into ecosystems and

medicine environments

National
security

Disaster management, homeland security,
defense systems, public policy

Analyze, design, stress-test, and optimize critical
systems such as communications, homeland
security, and defense systems; understand and
uncover human behavioral systems underlying
asymmetric operation environments

Engineering
design

Industrial and manufacturing processes Design, deploy, and operate safe and economical
structures, machines, processes, and systems with
reduced concept-to-deployment time

	

The system and application-wide advances required to reach exascale are not inevitable, and
require a fundamental rethinking across all aspects of High Performance Computing (HPC).
Material Science
Materials science drivers, objectives, and impacts that are enabled by Exascale leadership
platforms have been identified in Table 2 (Department of Energy, 2007).

TABLE 2: SELECT MATERIALS SCIENCE DRIVERS FOR LEADERSHIP APPLICATOINS AT
EXASCALE

Application
area Science driver Science objective Impact

First principles design of
increasingly complex
materials with specific,
targeted properties

Understand and use isolated
nanostructures to design materials
made out of nano-building blocks

Smart materials for
nanoelectronics, photo
voltaics, information
technology, and medicine

Predictive description of
microscopic behavior of
water to understand systems
in aqueous environments

Perform molecular dynamics with
forces found with Quantum
Monte Carlo computations

Detailed understanding of the
structure of water—
fundamental understanding of
biological systems.

Understand synthesis of
alloy nanoparticles with
potential impact for design of
new catalysts

Define the thermodynamics of
compositions of alloy
nanoparticles

Magnetic data storage
Economically viable ethanol
production
Energy storage via structural
transitions in nanoparticles

Nanoscale
science

Physics of strongly
correlated electron materials

Explain the fundamental
mechanism of high-temperature
superconductivity, including
materials specificity and
inhomogeneities

New materials for practical
applications in oxide
electronics and next-generation
power transmission

Earth Science
Earth science and climate change research will focus on two principal activities in the decade
ahead:

• Mitigation: Evaluating strategies and informing policy decisions for climate
stabilization; and

• Adaptation: Preparing for committed climate change with decadal forecasts and region
impacts.

Simulations of 100–1,000 years will be typical for mitigation activities, while shorter
simulations of 10–100 years will be used for adaptation. Each set of simulations must be

predictive and quantifiable in order to reliably inform policy makers. The requirements for
computing can be tied to these activities and goals, as shown in Table 1. For example, estimates
call for compute factors 1010–1012 greater than those available today to meet goals for spatial
resolution, model completeness, simulation times, and breadth and depth of ensembles and
scenarios.

Climate models are currently more reliable at short times scales and long, asymptotic scales.
Since many of the questions to be answered are targeted in the 20–50 year range, the ability of
models to provide reliable forecasts will be challenged.

The Earth Science community has also done well in articulating what it believes to be
attainable biogeochemical objectives over the next decade (Department of Energy, 2007):

• Integrated models and measurements of biogeochemical cycles;
• Development of next-generation ecological models; and
• Better theory for and quantification of uncertainty.

Climate science opportunities at the exascale are abundant (Hack and Bierly, 2007):
• Decadal prediction on regional scales (accuracy in global models);
• Climate extremes (heat waves, drought, floods, synoptic events, etc.);
• Climate variability (low-frequency variability);
• Water cycle (particularly in the tropics);
• Human-induced impacts on carbon cycle;
• Sea-level rise (melting of the Greenland and Antarctic ice sheets); and
• Abrupt climate change.

The rate limiters above are decadal prediction, abrupt climate change, and climate variability.
Security
Nuclear weapons provide an application driver for high performance computing and advanced
simulation in the security. The complexity of nuclear weapons design, certification and
assessment requires a combination of the most advanced computational and experimental
science, even during the era of underground nuclear testing. Presently, under the nuclear testing
moratorium and the U.S. Stockpile Stewardship Program (SSP), advanced computational
simulation has come to play a significant and foundational role in stewardship of the U.S.
nuclear stockpile, as led by the Department of Energy’s Advanced Simulation and Computing
Program (ASC)

The most significant application needs for Exascale simulation are the assessment and
certification of nuclear explosive package performance, full system safety, and weapon
survivability in nuclear environments. These simulations involve highly coupled, nonlinear
multi-physics with three-dimensional features, multi-scale phenomena, and inherent variability
in materials and manufacturing processes. By the end of the first decade of ASC, it was possible
to move from two-dimensional to three-dimensional nuclear performance simulations with
“standard” mesh resolutions and calibrated physics. This required achieving the goal of 100
tera-flops of integrated hardware and software capability. It is now estimated that, to replace
existing ad-hoc physics models, we must increase average mesh spacing in each spatial
dimension by an order of magnitude, incorporate more sophisticated, multi-scale model-based
physics, and quantify uncertainties in those physical models. The increase in spatial resolution
increases computational needs by at least a factor of 1000, while improved physics models are
estimated to increase computational needs by an additional factor of 100. Finally, the costs of
estimating uncertainties can be expected to results in suites of computations, ranging from 100s
to 1000s of realizations of the uncertain system parameters. This final class of computational

demand may not directly multiply the previous contributions, with the development of more
sophisticated sampling and model reduction techniques. However, even conservative estimates
of needed model evaluations increases computational needs by a least an additional order of
magnitude.

Additionally, we see emerging application areas in Informatics, where the goal is to examine
very large data sets (from direct observation or the output of simulations) to ask new questions,
form hypotheses, or generate new understanding. These emerging Informatics applications show
significantly more difficult data movement properties than do traditional 3D Physics
applications, and represent a critical challenge for the Exascale era.
ARCHITECTURAL CHALLENGES
The architectural challenges for reaching exascale are dominated by power, memory,
interconnection networks, and resilience. There are also significant software challenges including
the need for new programming models, latency and bandwidth tolerant techniques, fault-tolerant
methods, and algorithms that are scalable to millions and perhaps billions of threads (see the
discussion of architecture aware algorithms under ongoing research).
Power
Power is the dominant constraint for exascale computing. Already, current installations consume
tens of megawatts. Many large organizations have relocated their datacenters to areas providing
cheap electricity. Though shrinking feature size helps to alleviate these requirements, high-end
HPC machines have outpaced Moore’s law, resulting in an upward trend in power requirements.
The sheer scale of a machine performing one exa-operation per second (i.e. 1018
operations/second) means that if individual operations each require a single picojoule (1 pJ=10-12

J) of energy, a total of one megawatt of power will be required.
Extrapolating current power consumption trends into the Exascale timeframe (2018 for the

purposes of this article) yields startling trends. It is estimated that in the 2018 time frame a single
floating point operation will require 10 pJ of energy (Kogge et al., 2008). This assumes the
operands are already present at the floating point unit and does not include moving the data to or
from a register file. Using the Cacti 5.1 tool (Thoziyoor et al., 2008), and extrapolating to the
18nm technology node, a 32K L1 cache would consume 31 pJ and a 512K L2 96 pJ per access.
In addition to floating point and cache access, a processor core must also perform instruction
fetch and decode, integer operations for bookkeeping and data management, and drive its control
path. This can require substantial power. A MIPS64 5Kc processor, designed for low power
consumption still consumes 490 pJ per cycle at 90nm (MIPS Technologies, Inc., 2007). A 32-bit
ARM11 processor consumes 180 pJ/bit at 130nm. Adjusting to 64bit and assuming a linear
extrapolation, these processor cores would require 50-90pJ/cycle in an 18nm process.

Based on HPC workload analysis (Murphy et al., 2009) and the above estimates, we consider
two possible cases of instruction mix and cache performance to calculate processor power
consumption (see Table 3) to be 118-125 pJ per average operation. For an Exa-op machine, this
would become 118-125 MW.

TABLE 3: HPC WORKLOAD CHARACTERISTICS AND PROCESSOR POWER

% FP instructions % Load/Store L1 Hit Rate Energy/op

10% 50% 90% 69.8 pJ

5% 60% 80% 116.9 pJ

DRAM requirements for an Exascale machine will also be large. In 2018 it is estimated that
DRAM density will be 16GB/chip (ITRS 2007). 300 Petabytes of DRAM storage would require
18 to 21 million chips depending on ECC. If we assume DRAM chip power to be at 260-450mW
– based on current chips (Micron technology, 2007) and assuming a drop to 1.0V – an Exascale
memory system would require 5.5-9.5MW. Again, this assumes an extrapolation of current
technologies, which will likely not provide sufficient bandwidth to future massively multicore
processors.

Network requirements are discussed in more detail as part of the discussion of Architectural
Challenges. If we assume 8,192 to 32,768 routers, each capable of routing 77.8 Tb/sec and
128K-512K 1.2Tb/sec network endpoints, we have a unidirectional system bandwidth of 790.9
to 3,163.8 Pb/sec. Current long distance electrical interconnect can operate at 30 pJ/bit
(bidirectional)(Kogge et al., 2008). It should be quite feasible to reach 10 pJ/bit by 2018,
resulting in a total network power of 4.0-15.6MW

TABLE 4: TOTAL SYSTEM POWER REQUIREMENTS

 Low (MW) High (MW)
Processor 69.8 116.9

DRAM Memory 5.5 9.5

Network 4.0 15.6

Total 79.3 142.0
This results in a total system power of 79.3 to 142.0 MW (See Table 4). It should be noted

that this does not include archival storage, cooling, a RAS monitoring system, the internal router
power and many other necessary system components.

From 2007 to 1987 commercial power rates ranged from 9.2-12.0 cents per KWH in real 2008
dollars (DOE, 2007). Thus, one Watt-year costs $0.80 to $1.05, or one megawatt-year is
$800,000 to $1,050,000. This would mean that a conventionally constructed exascale machine
would cost between $63.4 million and $149.1 million a year simply to keep powered. Again, this
ignores cooling, power conversion, and other probably inefficiencies. Clearly, power will
become a limiting factor in designing an exascale machine.
Memory
Data movement has been the dominant performance bottleneck for all electronic computer
systems since their invention in the mid 1940s. Today’s HPC systems are no different (Murphy,
2007; Murphy and Kogge, 2007). As discussed in the Power and Packaging Section, data
movement, particularly “far” remote accesses will dominate the power requirements for all levels
of the memory hierarchy. Within a node, analysis of applications shows that even for scientific
codes, most of the instructions executed are not floating point, but memory and integer
instructions, and that most of the integer instructions are computing memory addresses (See
Figure 1). Furthermore, today’s dominant MPP architecture does a poor job of exposing the
memory hierarchy beyond a single node to fine-grain data access. While Partitioned Global
Address Space (PGAS) mechanisms in software and hardware may exist in modern
supercomputers, these mechanisms provide very little capability to do anything other than copy
data throughout the system. Worse, most node-to-node copies must be performed in a coarse
grained fashion, creating bursty communication patterns and forcing the programmer to
explicitly manage copies (even in a PGAS environment).

Figure 1: Instruction characterization and use of a portfolio of Department of Energy Applications

Fundamental technology imbalances between processor and memory systems, combined with
large memory footprints required by many applications typically produce low Instruction Per
Cycle (IPC) measures on modern processors, often significantly less than one. This inefficiency
is primarily dominated by a lack of concurrency and overabundance of latency in modern
memory systems (Murphy, 2007). Creating a more balanced system is one of the key challenges
in reducing power to enable exascale machines.

Finally, while mechanisms for synchronization, atomic operations, and transactions may exist
in small-scale cache coherent environments, there are no lightweight analogues to these
mechanisms available on MPPs. Performing operation at a distance, minimizing unnecessary
data copies, and enabling fine-grained operation will be required to optimize both power and
performance.

Figure 2 summarizes the results of Murphy and Kogge (2007), and measures three key data
movement and memory access pattern properties for applications: the Spatial Locality (or use of
data “near” data already used in memory), the Temporal Locality (or resuse of already used
data), and unique data set size normalized over an instruction interval (represented by the relative
size of the points on the graph). The application space can be thought of as consisting of two
classes: first, Physics Applications, which are the core of traditional HPC; and second,
Informatics Applications that represent increasingly important new codes. Whereas Physics
applications are generally simulations, have a 3D spatial decomposition, and are computing
floating point results, the Informatics applications tend to be unstructured, integer oriented, and
are used to form hypotheses from large data sets (either sensor data or the results of simulations).

	

Figure 2: Application Temporal Locality, Spatial Locality, and Data Set Size (adapted from Murphy &
Kogge (2007))

There are two key points that increase the challenges of data movement on an exascale
system. First, the Informatics applications are much more data movement oriented than the
Physics applications. For a comparable data set size, they exhibit only 61% of the temporal
locality and 30% of the spatial locality. And second, neither application set is well represented
by the benchmark suites used to tune the performance of machines. LINPACK has an extremely
small data set and much more temporal locality than the typical Physics code it is meant to
represent (and looks nothing like an informatics code), and neither SPEC benchmark suite (Int or
FP) is representative of anything, despite the fact that SPEC typically dominates CPU design
optimizations. An environment where the critical measures of success are demonstrably
unrepresentative, results inevitably in additional power consumption that we can no longer
afford.
Interconnection Networks
One of the critical challenges for Exascale computing will be providing sufficient interconnect
performance to facilitate application performance and scaling. Traditionally, three primary
metrics have been used to characterize interconnection networks: bandwidth, latency and

message rate. All of these metrics have seen slowing performance gains in the last several years,
and, going forward, latency is unlikely to improve much given the physical limitations (i.e. speed
of light); however, this trend must be reversed for bandwidth and message rate if we are to see
well balanced exascale systems. It will also be vital for networks to provide mechanisms for
overlapping communication with computation, as this tends to reduce the bandwidth
requirements for applications that take advantage of it. This implies that providing independent
progress and high message rate in the network hardware and software will become increasingly
important. However, in the exascale timeframe, two other characteristics will jump to the
forefront: power and resilience. The main challenge of exascale networks will be in providing
sufficient interconnect performance while maintaining reasonable power and resilience.

To illustrate the power problem with respect to bandwidth, consider an Exascale machine that
maintains the system balance found in the Cray XT4 system. The XT4 configuration considered
here has a network byte per FLOP ratio of 0.25 and a memory bandwidth to network bandwidth
ratio of 3:1. We assume that both of these ratios are maintained, but believe that the memory to
network bandwidth ratio is generally more important, as it typically drives on-node performance
for most of our applications. The analysis is topology agnostic, but assumes a direct network
where 1/4 of the switch bandwidth is used for host connections, while the remaining 3/4 is used
to build the network topology. This ratio is consistent with those used in recently developed
network topologies, such as dragonfly (Kim, 2008) and flattened butterfly (Kim, 2007).

If these requirements are projected forward to the Exascale, then total bidirectional node
bandwidth becomes 250 PB/s. It is generally felt that the use of direct to package optics and
WDM (wave division multiplexing) will readily lead to 10 pJ (Kogge, 2008) per bit transmission
energy requirements

2
, and a similar amount of energy required to move the data through the

internal switch logic. This leads to a total power requirement for this example Exascale
interconnect of 100 MW (including NIC and switch power) – which is an unreasonable number
for even the largest, contemporary computer data center.

There are two approaches to reducing the interconnect power requirements: reduce the
application bandwidth requirements and/or reduce the energy per bit transferred. We believe
pursuing both of these opportunities will be crucial. First, we note that there are ways to
improve the efficiency with which the network performance can be utilized. For example, our
applications have generally run slower on a per core basis on a Cray XT5 system than on an XT4
system. The difference between these two systems is that the FLOP rate and memory bandwidth
of an XT5 node is roughly twice that of an XT4, while the network performance remained
constant. However, we believe much of the application performance could be recovered by
facilitating higher message rate and true independent progress in the network. These features
would allow the applications to be modified to overlap computation and communication.
Enabling these capabilities will require research into both NIC architecture and the network stack
software. Enabling computation/communication overlap could allow us to reduce the bandwidth
requirements by a factor of 2 or more, depending on the application. However, the cost may be
the requirement for more memory bandwidth to provide enough memory performance to
complete both activities simultaneously. A factor of 2 reduction would bring the network power
requirements to 50MW and further reductions may be possible based on application
																																																													

2
 It should be noted that WDM increases the energy requirements per bit, but will be necessary to

keep the cable count to a reasonable level.

requirements. Part of the challenge of exascale will be in understanding the application
requirements so that the system can be properly balanced without wasting energy.

Further reductions can be found in fundamental device technologies. It has been suggested
(Kogge, 2008) that data transmission energy could be reduced to 2 pJ/bit. However, substantial
research investment will need to be made to reach this goal. A similar research effort will be
required to reduce the energy consumption of the core switch, which could include fundamental
circuit research and/or optical switching technology. A 5X power reduction in both of these
areas would lower the interconnect power requirements to 10MW, which is finally in a
reasonable range.

We feel the primary challenge to building reasonably balanced exascale systems will be
power consumption, though reliability will also be an important area to consider. Current trends
will not lead us to viable interconnect options and substantial investment in various research
areas will be necessary. These include, but are not limited to: fundamental device technologies,
particularly in the field of silicon photonics; mechanisms to provide high message throughput
and true independent progress; applications; and network topologies to take advantage of
advances in these areas.

Resilience
As massively parallel processing (MPP) systems continue to grow in size, complexity, and
component count, the ability of applications to endure failures and make effective use of
increasing computational power is rapidly decreasing. The average time that the largest
platforms can run without incurring a failure fatal to a full-system application was once
measured in weeks. That time is now being measured in hours, and, barring any change to
current practices, it will soon be measured in minutes. A recent study led by Sandia concluded
that, as systems grow beyond 100 thousand components, a combination of factors lead to a
situation where more than half of the available computational resources will be wasted (Oldfield,
2006). Figure 3 shows the minimum checkpoint overhead as a percentage of the overall
execution time. This calculation is overly optimistic because it assumes data transfers at

Figure 3: Approximation of checkpoint overheads for HPC systems.

theoretical network and storage rates, and that the application writes a checkpoint at the
“optimal” checkpoint period (Daly 2006). In practice, these overheads will be worse. In the
remainder of this section, we discuss the issues related to application resilience for exascale
systems and outline potential solutions.

In some cases faults are automatically detected and corrected by hardware and system
software. For uncorrectable errors, resilience on Massively Parallel Processing (MPP) systems
has traditionally been the responsibility of the application, with the primary tool being
application-directed checkpoints to secondary storage. There are several reasons that this
approach will not be sufficient in the near future.

For nearly all systems, secondary storage comes in the form of disk system that is accessible
by each computing element, typically through a parallel file system. Writing checkpoint data
from tens of thousands of processes in a parallel application simultaneously places great strain on
the parallel file system in terms of both performance and reliability. The parallel file system and
the underlying disk components are arguably the most fragile pieces of software and hardware in
any system. Depending on the most unreliable part of a system to ensure application resilience is
disconcerting. Currently, the only method of increasing I/O performance is to add more disks,
which in turn increases the likelihood of a disk failure. As the amount of checkpoint data
increases with system size, disk-based parallel file systems will not be sufficient.

In addition, the hardware components from which systems are composed are becoming more
fragile. In an effort to continue to increase performance and lower energy costs, hardware
components are becoming more susceptible and sensitive to uncorrectable errors. For example,
reducing the feature size of an integrated circuit to increase the number of processing elements
per area also increases the probability of errors stemming from naturally occurring radiation
sources, such as cosmic rays. While the probability of such errors can be extremely low for
commodity components for mass consumer markets, the massive scale at which these parts are
used in large parallel computing systems increases the probability of error to a statistical
certainty. Current methods of using MPP systems are not sufficient to deal with an environment
where there is at least one failed component throughout the lifetime of the application.
ONGOING RESEARCH
This section summarizes ongoing research within the DOE Institute for Advanced Architecture
aimed at overcoming some of the challenges discussed in the previous section. A key strategy is
to co-evolve architectures and algorithms as we strive to reach exascale computing. Key facets of
this work are the development of:

1. Architectural-aware and highly scalable algorithms;
2. Simulation tools to quantify the impact of architectural changes on algorithms and

applications, to guide the development of future supercomputers, and to identify
algorithm bottlenecks and hence aid in the development of new methods;

3. 3D-Packaging techniques to reduce power consumption and increase memory bandwidth;
4. New approaches to enable resilience; and
5. New benchmarks that better characterize HPC applications.

Each of these is discussed in turn in the following sections.
Architecture Aware Algorithms and Scalability
For many years, science and engineering application developers have enjoyed a stable
programming environment in the context of standard programming languages and message
passing on a nearly homogeneous network of serial processors. However, the path to exascale

computing poses several new challenges to application developers. Exascale performance will
require the use of multicore nodes such that MPI-only will not be sufficient. Furthermore,
optimal node performance will be challenged by reduced memory bandwidth per core, the need
for SIMD expressions and underdeveloped programming environments.

Although there is much that hardware and system software developers can do to aid
application performance on new systems, more than ever before scalable algorithms and
implementations will need to be architecture-aware and developed for scalability. It is especially
important that algorithms be designed and implemented with knowledge of the node architecture,
and that new modeling and analysis methods such as time-parallel methods, advanced
mathematical optimization and uncertainty quantification be cultivated to expose additional
parallelism.
Parallel Programming Transformation
The first and foremost challenge to optimal use of Exascale computers is the required
transformation of parallel programming strategies. There is mounting evidence that optimal
parallel applications for scalable multicore computer systems will rely on MPI for inter-node
parallelism, but will need to introduce large-volume functional parallelism and SIMD
vectorization to effectively use the multicore node. Vectorization is the job of the compiler,
with a limited help from the programmer via pragmas and directives, so the real issue is that
presently there is no obvious parallel programming model for implementing the middle layer of
parallelism. Current standards such as OpenMP, Pthreads and UPC are not designed for
multicore nodes. CUDA, RapidMind and related products target multicore nodes but are
proprietary. OpenCL is an emerging standard but is not really a user-oriented interface, and will
likely not provide optimal performance (e.g., in comparison to CUDA on GPUs).

However, even without an emerging programming model for multicore, there is a vast amount
of work required to prepare existing applications for multicore nodes. Two major tasks are
reducing bandwidth requirements as much as possible, primarily by introducing the use of mixed
precision, storing data in 32-bit arrays wherever possible; and rewriting low-level kernels as
stateless functions with large enough granularity to keep a SIMD core busy, and small enough
that there is a large volume of simultaneous function calls to execute.
Beyond the Forward Problem
In many areas of science and engineering, solving a single problem with given input conditions,
often called the forward problem, is sufficiently challenging, and higher forward problem fidelity
is the highest priority for scalable computing. However, as the fidelity of the forward problem
becomes sufficiently good, it becomes possible and imperative to study parameter sensitivities,
quantify uncertainties and automatically compute an optimal solution over a range of parameter
values.

All of these advanced modeling and simulation techniques quickly increase problem size and
parallelism—often by orders of magnitude—and large problems can easily exceed the computing
capacity of our largest systems. The simplest of these approaches are “black box” in nature and
do not require a true Peta/Exascale system (instead requiring a cluster of Tera/Petascale
systems). However, more advanced methods (often called embedded methods) rely on a tightly
coupled aggregation of forward problems and require a true peta/exascale system. The challenge
with embedded methods is that they require the transformation of an application into a
“subroutine” because embedded methods need to call the forward solve as a function. Most
applications were not designed with this mindset, so this transformation will be challenging.

Furthermore, many of these approaches assume a smoothly varying nonlinear function, which is
often not the case in practice. Some functions are inherently non-smooth. Others are
implemented in such a way that function evaluations involve table lookups, or ad hoc evaluation
techniques. Such functions can often be rewritten to improve smoothness.

An additional dimension of potential parallelism is in time. Traditionally, we have restricted
our parallelism to spatial dimensions, but there are promising new algorithms that can extract
parallelism by considering multiple time steps simultaneously. Such approaches can greatly
improve parallel execution, especially in situations where the spatial resolution cannot be
practically increased, either due to stability constraints or sufficient spatial resolution.
Robust multi-precision algorithms
Floating point computation has always been faster for single precision (SP) data and computation
than for double precision (DP). However, presently, SP computations are even more attractive
because bandwidth-intensive calculations can severely limit effective core use on a multicore
node. Figure 4 shows the impact of SP vs. DP for an implicit finite element miniapplications
called MiniFE on the Intel Nehalem and AMD Barcelona processors. Use of SP is not only
faster than DP on a single core, but also allows much more effective use of additional cores.

Figure 4: Single precision (SP) vs. Double precision (DP) performance for a finite element miniapplications.

Nehalem performance from 4 to 8 cores goes up by 50% for SP, 15% for DP. SP is nearly twice as fast as DP
at 8 cores.

Using preconditioned iterative methods as an example, new basic kernels such as
preconditioners for multi-core processors must support multiple scalar data types, including
single and double precision. These kernels will enable the use of mixed precision algorithms and
multi-core processors. They will provide the foundation for optimal preconditioners on scalable
multi-core systems. In addition, we will need production quality metrics of condition estimates,
and accuracy and precision estimates that can help determine the required precision for storing a
given data object and the required precision for a given computational step.
Simulation
To reach the goal of exascale, it will be necessary to make substantial leaps in a number of
technologies and architectures. Unfortunately, it will not always be practical to construct
prototype systems of sufficient size to fully evaluate the impact of these new technologies at

scale. Therefore we will have to rely on simulation to guide many design decisions. Currently,
the architecture community lacks the tools needed for such evaluations.

To meet this need, we are constructing a simulation environment for simulating large-scale
HPC systems. The Structural Simulation Toolkit (SST) will allow parallel simulation of
machines at multiple levels of detail (from cycle-accurate instruction-based to message-driven
simulation). It will incorporate models for processors, memory, and network subsystems. Some
key features:

• Scalable Parallel Simulation: The simulation framework allows large parallel simulations
of even larger parallel machines. This will allow us to use the supercomputers of today to
design the supercomputers of tomorrow. Efficient parallel simulation requires built-in
support for automatic partitioning, checkpointing, and event serialization.

• Multiscale: Different simulation models allow either abstract or detailed evaluation of
system components. This will allow different system characteristics to be evaluated at the
necessary level of detail and accuracy, while still allowing other parts of the simulation to
be performed in a faster but more abstract manner.

• Holistic: Raw performance is only one of several challenges for an exascale system. An
exascale simulator should provide a unified interface to a variety of technology models,
allowing components to easily estimate power, energy, area, cost, and reliability.

	

Figure 5: Preliminary weak scaling performance of parallel DES Algortihm

Currently, Sandia has completed a serial implementation of the SST. This version has been
used to explore interconnect (Hemmert, et all, 2007) and perform application analysis (Rupnow,
et all, 2006). Currently, Sandia is expanding the serial SST into a parallel version. Already, we
have constructed a parallel core that demonstrates many of these features and have integrated
basic processor and network models and a detailed memory models (Jacob, 2009) into the
framework. Preliminary scaling studies of the (See Figure 5) conservative distance-based parallel
discrete event simulation algorithm under a variety of levels of detail indicate good scaling
characteristics. A consortium of other academic and laboratory partners has formed to continue
to improve this core and add new components. We are actively soliciting input from potential
users and partners on the structure and requirements of this simulation toolkit.
3D Packaging
The power analysis in presented above assumes a machine constructed along highly conventional
lines. To efficiently reach exascale, it will be necessary to harness a number of unconventional

and emerging technologies. In particular, advanced 3D packaging may provide a solution to the
power dilemma.

3D packaging involves integrating IC chips with vertical connections extending through the
substrate of one chip to connect the next. These connections through the silicon, or Through-
Silicon Vias (TSVs) allow information to be moved from one chip to another with very little
power – 1-11 fJ/bit (Kogge et al., 2008). TSVs may be used to allow close connections between
a processor, DRAM, and network chips.

Currently, a DDR3 DRAM chip consumes 400mW-450mW, with about 180-200 mW of that
used for communication across the memory bus to the processor. A stacked DRAM would only
require about 10 fJ/bit to drive a Through-Silicon Vias, or only a single mW to reach a similar
bandwidth as the DDR3. This would save 40-50% of the DRAM’s power. Additionally, with
more signal lines to access the DRAM it will be possible to reduce the number of bits charged in
each DRAM activation from the 8K bits per device in current DRAMs to only the 512 needed to
fill a cacheline. This could save another 15-20%. Total savings would then be on the order of
55% to 70%, or $2.4M to $7.0M a year.

The processor could also benefit from close integration with memory. Currently, I/O across
the memory bus can account for 10-15% of a processor’s energy (Laudon, 2007). This could be
reduced substantially with the use of TSVs instead of power-hungry bus-based communication.
Additionally, the proximity of stacked memory could make it possible to remove the L2 cache
from processors, reducing the size of the clock tree and saving an additional 10-20%. Total
savings of 20-35% would translate into $11.2 to $43.0M a year.

Lastly, the network could be improved by enabling silicon photonic interconnect. By using
optical instead of electrical signaling, silicon photonic networks have the potential to reduce
network power requirements to 0.2 to 1.5 pJ/bit (Kogge et al., 2008; Watts, 2009). However, to
function effectively, they require extremely low capacitance connections between the optical
devices and the communicating processor. 3D TSV integration could provide the necessary
connections. This would reduce the network power to .01 to 2.34 MW a savings of $1.3 to
$16.4M per year.

Additionally, 3D packaging may reduce the cost of systems by allowing more efficient
integration of silicon pieces fabricated in heterogeneous processes and by amortizing packaging
costs.

TABLE 5: ESTIMATED DIE PRODUCTION COSTS

Device Date Size (mm2) Good Die
Cost ($)

G.D.
Cost/mm2

Packaging
Cost

DRAM 1Gb June 17 45-90 1.07-1.63 $.01-$.03 18%

Core Duo
45nm

09Q1 143 $13.50 $.094 46%

Nehalem
45nm

09Q1 263 $36.80 $.140 47%

Barcelona
65nm

07Q4 285 $41.92 $.147 54%

Using an IC Cost estimation tool (ICKnowledge LLC, 2009) and current prices for DRAM
(DRAM Exchange, 2009), it is possible to estimate the production cost for known good die for
various devices (See Table 5). From this it can be seen that not all ICs are equal. The cost of a
DRAM die may be as low a penny per mm2, while a processor may be over ten times this, due to

the extra layers of metal and more exotic materials and processes required. While it is beneficial
to integrate processing and memory in close proximity, doing this on the same die would either
be wasteful (running a simple DRAM part through a processor fab line) or detrimental to
performance (implementing a processor in a DRAM fab process). With 3D integration, it is
possible to choose the fabrication line which best suits each intended device and still provide
tight integration with other dissimilar devices.

Package and post-package test of processors can account for 50% or more of their total gross
cost. The cost per pin (including test, packaging yield, redistribution layers, etc…) can be 2-4
cents. Additionally, each pin requires more that complexity be added to the socket, and a new
trace on the board. Though 3D integration introduces new difficulties and cost into the cost
packaging stage it may reduce overall cost by amortizing the cost of a package over several chips
and by replacing expensive pins with inexpensive VIAs.

In summary, advanced packaging will have to be a critical part of any exascale strategy. The
prohibitive cost of powering an exascale system can be reduced to more manageable levels
($48.5M to $82M/year) by allowing tighter integration of processor, memory, and interconnect.
Approaches to Resilience
In order to reduce the amount of data that needs to be preserved and managed, we are developing
runtime support for high-reliability data storage and retrieval. By developing runtime system
capabilities that provide user-requested high-reliability for a given data object, algorithm and
application developers can make known to the system the critical subset of data needed by a
computation.

In addition, we are exploring the ability for a user to declare a computational scope that needs
to be free from soft data errors and/or computation errors. This approach allows the programmer
to explicitly communicate the performance/reliability tradeoff to the system. These mechanisms
would be used in the development of resilient iterative Krylov methods. By using flexible
variants of these methods, and careful formulations of orthogonalization steps, we believe that
we can still have reliable iterative results with only a fraction of the total data and computation.

From a system software perspective, we are investigating system-directed checkpointing
strategies and transparent redundant computation. The goal of system-directed checkpointing is
to provide efficient, application-transparent resilience through coordinated use of system
resources. To efficiently quiesce and checkpoint a large-scale application not only requires
cooperation among the individual processes, it also requires integration and cooperation with
shared services like the network, scheduler, and storage system. This approach will have to deal
with messages in transit, in-progress file system operations, and interactions with various other
shared services. We expect to leverage the simplicity of a lightweight kernel environment and
an integrated RAS system to reduce the complexity and increase the performance of extracting
application state. For transparent redundant computation, we are providing the ability for an
MPI application to run extra processes on a set of redundant nodes and automatically switch to
using these extra processes should a failure be encountered. Our current approach is to provide
this capability entirely at the application layer using MPI, in order to be as portable as possible.

We are also actively engaged in real-time statistical analysis of monitored systems (Brandt
2009) as well as detailed analysis of system log files (Oliner, 2007). This work provides a
critical foundation for understanding the root cause of failures and could ultimately lead to
mathematical models that enable prediction for certain types of system faults. For example,
Figure 6 shows active memory normalized to the total system memory for a single node of one
of Sandia’s Tri-Lab Linux Capacity Clusters (TLCC) systems. Automated monitoring systems,

along with statistical models help identify anomalies that identify future faults. In this case, the
anomaly identified in Figure 6 signals an impending memory fault.
	

	

	

	

	

	

	

	

Improved Benchmarks
Production-quality science and engineering applications are typically large, complicated and full-
featured software products. As a result, they tend to be challenging to port to new computer
platforms and require a well-trained user to do so. Although benchmarking of these applications
on new platforms is essential as part of the design and implementation of a new computer
system, the scope of this benchmarking is necessarily limited by the complexity of the software
product, not to mention its demand for a full scope of system features that are only available after
a new computer system reaches its near-production capabilities.

Characteristics that impact performance should be understood as early as possible in the
analysis and design of new computers. Furthermore, it is often the case that there are multiple
ways to design and implement the algorithms used in an application, and the choice can have a
dramatic impact on application performance.

To address these needs, our recent work in application performance analysis takes advantage
of two important properties of many applications: Although an application may have one million
or more source lines of code, performance is often dominated by a very small subset of lines;
and, for the remaining code, these applications often contain many physics models that are
mathematically distinct but have very similar performance characteristics.

To exploit the properties listed above, we have developed a growing collection of mini-
applications (called miniapps). Miniapps take advantage of the above two application properties
by encapsulating only the most important computational operations and consolidating physics
capabilities that have the same performance profiles. The large-scale application developer, who
is tasked with developing the miniapp, guides the decisions, resulting in a code that is a small
fraction of the original application size, yet still captures the primary performance behavior.

Figure 6: Measurements of active memory normalized to the total system memory help identify abnormal
behavior that ultimately leads to a memory fault (Brandt, 2009).

There are many benchmarking efforts for scientific computing. The Top 500 High
Performance Linpack (HPL) and the HPC Challenge benchmark suite are among the most
popular. In addition, full-scale applications are often used for performance analysis, but usually
on near-production systems. Between these two extremes there is a middle ground for small,
self-contained programs that, like benchmarks, contain the performance-intensive computations
of a large-scale application, but are large enough to also contain the context of those
computations. The NAS Parallel Benchmarks fall into this category and have been commonly
used, as have the compact or synthetic applications developed as part of the Department of
Defense High Performance Computing Modernization Program. SWEEP3D also fits this
category.

The Mantevo project (Heroux, et. al., 2009) has developed several miniapps that are available
via the GNU Lesser General Public License (LGPL) and downloadable from the Mantevo
website. The miniapps include implicit finite elements (MiniFE), molecular dynamics
(MiniMD), contact detection (phdMesh) and electrical circuits (MiniXyce). The following
sections discuss MiniFE and MiniMD.
MiniFE: Implicit Finite Elements
Many engineering applications require the implicit solution of a nonlinear system of equations
where the vast majority of time--as problem size increases--is spent in some variation of a
conjugate gradient solver. As a result, any miniapp focusing on this area will necessarily have a
conjugate gradient solver as the dominant computational kernel.

MiniFE (also known as HPCCG) is a miniapp that mimics the finite element generation,
assembly and solution for an unstructured grid problem. The physical domain is a 3D box with
configurable dimensions and a structured discretization (which is treated as unstructured). The
domain is decomposed using a recursive coordinate bisection (RCB) approach and the elements
are simple hexahedra. The problem is linear and the resulting matrix is symmetric, so a standard
conjugate gradient algorithm is used with a general sparse matrix data format and no
preconditioning.

This simple code—which is not intended to be a true physics problem—is sufficiently
realistic for performance purposes. Furthermore, it contains approximately 1,500 lines of C++
code.
MiniMD: Molecular Dynamics
The MiniMD application is miniature version of the molecular dynamics (MD) application
LAMMPS (LAMMPS 2009). The source for MiniMD is less than 3,000 lines of C++ code. Like
LAMMPS, MiniMD uses spatial decomposition MD, where individual processors in a cluster
own subsets of the simulation box. And like LAMMPS, MiniMD enables users to specify a
problem size, atom density, temperature, timestep size, number of timesteps to perform, and
particle interaction cutoff distance. But compared to LAMMPS, MiniMD's feature set is
extremely limited, and only one type of pair interaction (Lennard-Jones) is available. No long-
range electrostatics or molecular force field features are available. Inclusion of such features is
unnecessary for testing basic MD and would have made MiniMD much bigger, more
complicated, and harder to port to novel hardware. The current version of LAMMPS includes
over 130,000 lines of code in hundreds of files, nineteen optional packages, over one hundred
different commands, and over five hundred pages of documentation. Such a large and
complicated code is not ideally suited for answering certain performance questions or for
tinkering by non-MD-experts.

A rewrite of a full application code base would be a daunting task, but a complete rewrite of a
miniapp to test a new idea can be achieved fairly quickly. We have used MiniFE, MiniMD and
the other Mantevo miniapps to test numerous software performance questions and ideas.
Explorations included changing from double to single precision to investigate how much
performance would improve. We have also developed performance models that provide a
mathematical description of performance. For example, MiniMD has been used to test the
scaling performance of the spatial decomposition algorithm as the number of processors
increased towards infinity. It was found that the fraction of time spent on computation did not
approach unity (the fraction of time spent on communication did not approach zero). This
finding demonstrated a limitation of the spatial decomposition algorithm for performing MD
(MiniMD 2009).
CONCLUSIONS
There is currently considerable interest in Exascale computing. This paper discussed several
application drivers, technological challenges and ongoing research aimed at overcoming some of
these hurdles. However, a collaborative international effort will be needed to overcome all the
key research challenges.
REFERENCES
Brandt, J., Gentile, A., Mayo, J., P´ebay, P., Roe, D., Thompson, D., & Wong, M. (2009).
Methodologies for advance warning of compute cluster problems via statistical analysis: a case
study. In Resilience ’09: Proceedings of the 2009 workshop on Resiliency in high performance
(pages 7–14). ACM.

Brown, J.L., Goudy, S., Heroux, M.A., Huang, S.S. & Wen, Z. (2006). An evolutionary path
towards virtual shared memory with random access. In SPAA '06: Proceedings of the eighteenth
annual ACM symposium on Parallelism in algorithms and architectures (page 117). ACM.
Daly, J. (2006). A Higher Order Estimate of the Optimum Checkpoint Interval for Restart
Dumps. Future Generation Computer Systems (pages 303–312).
Department Of Energy (2007). "Annual Energy Review 2007." Energy Information
Administration, 2007. Retrieved on June 16, 2009 from www.dramexchange.com.
Department of Energy (2007). Modeling and Simulation at the Exascale for Energy and the
Environment, Office of Science, http://www.mcs.anl.gov/~insley/E3/E3-draft-2007-08-09.pdf,
Washington, D.C.

DRAM Exchange (2009). Retrieved June 16, 2009 from http://www.dramexchange.com.
Feldman, M. (2008). ORNL’s “Jaguar” Leaps Past Petaflop. HPCWire. On Jul5, 2009 from
http://www.hpcwire.com/blogs/ORNLs_Jaguar_Leaps_Past_Petaflop_34282109.html.
Hack, J., & Bierly, E. (2007). Computational and Informational Technology Rate Limiters to the
Advancement of Climate Change Science, presentation given to the DOE Advanced Scientific
Computing Research Advisory Committee, November 6–7, 2007. http://www.sc.doe.gov/ascr/
ASCAC/presentationpage1107.html.
Heermann, P. (1998). Production Visualization for the ASCI One TeraFLOPS machine. In
Proceedings of Visualization ’98 (pp. 459-462). IEEE.
Hemmert, S., Underwood, K., & Rodrigues, A. (2007). An Architecture to Perform NIC Based
MPI Matching. In 2006 International Conference on Cluster Computing (Cluster 2007).

Heroux, M. (2003). Trilinos Home Page, 2003. http://trilinos.sandia.gov.
Heroux, M. (2009). Mantevo Home Page, 2009. http://software.sandia.gov/mantevo.

Heroux, M., et. al. (2009). Improving Application Performance via Mini-applications. Technical
Report SAND2009-5574, Sandia National Laboratories, 2009.

ICKnowledge LLC. "IC Cost Model 0904a." June 2009.
ITRS International Roadmap Committee (2007). International Technology Roadmap for
Semiconductors.
Jacob, B. (2009) DRAMSim: University of Maryland Memory-System Simulation Framework.
University of Maryland Memory-Systems Research. 2009. Accessed on June 19, 2009 from
http://www.ece.umd.edu/dramsim/#version2.

Kahle, J. (2005). The Cell Processor Architecture. In Proceedings of the 38th Annual IEEE/ACM
International Symposium or Microarchitcture. IEEE Computer Society.

Keiter, E.R., Mei, T., Russo, T.V., Rankin, E.L., Pawlowski, R.P., Schiek, R.L., Santarelli, K.R.,
Coffey, T.S., Thornquist, H.K., & Fixel, D.A. (2008). Xyce Parallel Electronic Simulator: Users'
Guide, Version 4.1. Technical Report SAND2008-6461, Sandia National Laboratories, 2008.
Keyes, D., A. Kritz, & W. Tang, Fusion Simulation Project (FSP): Workshop Report,
presentation at the DOE Advanced Scientific Computing Research Advisory Committee
(ASCAC) meeting, November 2007.

Kim, J., Dally, W.J., & Abts, D. (2007). Flattened butterfly: a cost-efficient topology for high-
radix networks. In Proceedings of the 34th Annual International Symposium on Computer
Architecture (pp.126-137).
Kim, J., Dally, W.J., Scott, S., & Abts, D. (2008). Technolgy-driven, highly-scalable, Dragonfly
topology. In Proceedings of the 35th Annual International Symposium on Computer Architecture
(pp.77-88).

Kogge, P. et al. (2008). ExaScale Computing Study: Technology Challenges in Achieving
Exascale Systems. Department of Computer Science, University of Notre Dame, Notre, Dame.

LAMMPS Molecular Dynamics Simulator (2009). http://lammps.sandia.gov/index.html.
Laudon, James. "UltraSPARC T1: A 32-threaded CMP for Servers." Berkeley CMP
presentation, 2007.
Mann, R. (2007). BioEnergy Science Center: A DOE Bioenergy Research Center, presentation at
the 2007 Fall Creek Falls Workshop, Nashville, Tennessee, September 2007. Information
available at http://www.iter.org.

Micron technology (2007). Calculating Memory System Power for DDR3. Boisie, Idaho.
MIPS Technologies, Inc. (2007). MIPS64® 5Kc® Processor Core Data Sheet.

Murphy, R.C. (2007). "On the Effects of Memory Latency and Bandwidth on Supercomputer
Application Performance." Proc. of IEEE Internaional Symposium on Workload
Characterization 2007 (IISWC07), September 27-29, 2007.

Murphy, R.C., & Kogge, P.M. (2007). "On the Memory Access Patterns of Supercomputer
Applications: Benchmark Selection and Its Implications." IEEE Transactions on Computers 56,
no. 7 (July 2007): 937-945.
Murphy, R., Rodrigues, A., Kogge, P., & Underwood, K. (2009). The Implications of Working
Set Analysis on Supercomputing Memory Hierarchy Design. International Conference on
Supercomputing. Cambridge.

Numrich, R.W. & Heroux, M.A. (2009). A performance model with a fixed point for a molecular
dynamics kernel. In Proceedings International Supercomputing Conference '09.

Oliner, A., Stearley, J., What supercomputers say: A study of five system logs. In 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pages 575–584,
Edinburgh, UK, June 2007. IEEE Computer Society Press.
Oldfield, R.A., Arunagiri, S., Teller, P.J., Seelam, S., Riesen, R., Varela, M.R., & Roth, P.C..
Modeling the impact of checkpoints on next-generation systems. In Proceedings of the 24th
IEEE Conference on Mass Storage Systems and Technologies, San Diego, CA, Sept. 2007.

Qthreads (2009) Sandia National Laboratories: Qthreads, 2009.
http://www.cs.sandia.gov/qthreads.

Rupnow, K., Rodrigues, A., Underwood, K., & Compton K. (2006). “Scientific Applications vs.
SPEC-FP:A Comparison of Program Behavior”, In Proceedings of the International Conference
on Supercomputing.

Shiva, S. (2005). Advanced Computer Architectures (page 7). Boca Raton, FL: CRC Press.

Simon, H., Zacharia, T., Stevens, R. et al. (2007). Modeling and Simulation at the Exascale for
Energy and the Environment. Department of Energy Technical Report.
http://www.sc.doe.gov/ascr/ProgramDocuments/TownHall.pdf.
Thoziyoor, S., Ahn, J.H. , Muralimanohar, N., & Jouppi, N. (2008). Cacti 5.1. HP Labs.

Watts, M (2009). Microphotonic Circuits, Networks, and Sensors. Center For Integrated
Photonic Systems Annual Meeting. Massachusetts Institute of Technology.

Weigand, G., Energy Assurance and High Performance Computing, Supercomputing 2007,
presentation given at the ORNL booth, November 2007.	

