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Abstract—This paper describes the use of a novel associative
memory neural network architecture to perform unsupervised
phrase detection in a large, unstructured, English text corpus.
To significantly increase the difficulty associated with processing
the text corpus, the network is exposed to over 270 thousand
web pages from the .edu domain with no textual substitution or
alteration (for spelling, grammar, etc.). The corpus, consisting
of 150M words, is represented as a string of sparse tokens and
phrase detection is performed through the use of the unique
information theoretic quantity of mutual significance.

I. INTRODUCTION AND MOTIVATION

This work describes the construction of a novel phrase
detector capable of automatically finding phrases of two to
five words in an unstructured English text corpus. The detector
learns solely by examining English text and requires no super-
vision. In this case, the corpus consists of over 270 thousand
web pages sampled from the .edu domain and consists of 150
million words. Unlike other systems, this phrase detector is
robust for very large real-world corpuses. The selection of web
pages was designed to increase the difficulty of the problem
given to the network.
After training, the detector can be exposed to an arbitrary

string of English text and break it up into its component
phrases. This is the first step in constructing a higher-level
set of networks capable of abstracting the phrases into uni-
tary tokens, and identifying the relationship between phrases
(meaning, synonymy, etc.). Critically, this system runs using
relatively modest computational resources.
The entire phrase detector uses only one form of

information-theoretic knowledge, the mutual significance pro-
posed by Robert Hecht-Nielsen. This system uses five myopic
knowledge bases to identify phrases within the text corpus.
The simplicity of the knowledge acquisition, combined with
a straight forward method for combining knowledge from
multiple knowledge bases is the basis for this system.
The rest of the paper is organized as follows: Section II

gives a brief overview of the background literature; Section
III describes the properties of the text corpus and associated
lexicon; Section IV provides an overview of the associative
memory neural network architecture used in this system;
Section V details the experiment; Section VI summarizes the
results; and, Section VII concludes with a summary of the
impact of this work and the direction of future research.

II. BACKGROUND
There are a number of proposed methods for detecting

phrases within an English text corpus. Linguists have proposed
rule-based methods for determining Noun and Verb phrases.
Numerous methods for text summary such as [8], [4] work
based on human annotation of noun and verb phrases within
a document. Other systems rely on linguistic rule databases
to find phrases [10], [6]. These systems are often brittle, and
often require well formed text. Neural network approaches
can obviously match patterns or provide categories, however
a self-organizing phrase detector has yet to be specified.

III. THE TEXT CORPUS
The chosen text corpus is a set of over 270,000 web pages

sampled from the .edu domain. The domain, while broad, was
chosen to allow the network to train on relatively long docu-
ments. The use of web pages, as opposed to books or other
media, is intended to expose the network to actual text with all
the flaws (misspellings, grammar errors, etc.) associated with
less formal writing. Even given these difficulties, the system
understands the significant terms.
The corpus consists of the following:
over 270,000 web pages,
Approximately 1 GB of encoded data (with words re-
placed by pointers to a lexicon);
a lexicon consisting of over 2.5M unique words;
a total of 150,000,000 instances of those words to be read
by the network.

Many of the words in the complete lexicon are instanti-
ated very few times (many only once). To facilitate faster
processing, the lexicon was limited to a set of the 5,000 most
frequently occurring words, which covers 82.6% of the corpus.
Figure 1 shows the coverage of a lexicon of a given size. The

choice to limit the size of the lexicon to 5,000 words provides
for significant coverage while simultaneously allowing the
simulation to occupy a relatively small footprint (running
on a 32-bit uniprocessor with 1 GB of physical memory, in
approximately 45 minutes). Doubling the size of the lexicon
improves the coverage by less than 8%.
All punctuation in the corpus is represented by denoting

a single punctuation token, and is interpreted as breaking up
phrases. A more complex understanding of grammar may be
necessary with significantly larger phrase construction. HTML
tags are treated the same as punctuation.
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Fig. 1. Coverage of the Lexicon

IV. THE ARCHITECTURE

The system is constructed using the basic cortronic archi-
tecture proposed by Hecht-Nielsen. [3] Inspired by the asso-
ciative memories proposed (independently) by Steinbuch and
Willshaw [9], [11], Hecht-Nielsen’s architecture significantly
extends the simple associative model by providing differing
representations for tokens and a mutual significance weighting
for the relationship between two tokens.
The neural network architecture operates symbolically, us-

ing tokens that consist of a set of neurons chosen to
represent information (in this case words) uniformly at random
from a neural region of neurons. While the choice of
language for this particular experiment eases the token-based
representation of information, this type of symbolic processing
extends to any type of information processing operation that
can be quantized, and is inspired by the information processing
that may be employed by the thalamacortex.
The system is designed to examine up to five words si-

multaneously and attempt to construct phrases. George Miller
proposed that humans examine between 5 and 9 words when
reading[7]. These words are given to the system by expressing
them on a neural region, consisting of neurons. Each token
(representing a word) consists of a set of neurons chosen
uniformly at random. The neural regions are very sparse, and
neurons which are never expressed are not stored. Numerous
and parameters have been used, with the same result.

Small experiments used and to represent
words, however that proved computationally challenging (for
commodity hardware). Consequently, the parameters

and were substituted to eliminate
redundant mutual significance storage and simplify the feature
attractor component of the network (rather than a more brain-
like neural representation). See Section IV-B The choice of
these parameters is more for experimental convenience than
statistics. Maintaining the (extreme) sparseness is all that is
required for the system to function correctly.
It should be noted that analysis of token versus neuron

representations in more complex systems is an open research

question. Trade-offs such as fault tolerance, information rep-
resentation capacity, etc., are well beyond the scope of this
work.

A. Mutual Significance Evaluation
The fundamental operation of given architectures is mutual

significance evaluation. Two tokens ( and ) are understood in
terms of the defined, information theoretic quantity of mutual
significance:

That is, significance is simply the ratio of the joint prob-
ability and the a priori probabilities. Mutual significance is
the number of times chances two tokens appear together in
the regions of interest. That is, it is known from statistics that

when tokens and occur independently.
Thus a mutual significance occurs when two tokens are
independent.
This network resembles a number of other critical quan-

tities. The mutual information given by the two tokens is
. There are obvious connections with relative en-

tropy or Kullback-Leibler divergence [2], [1].
The Mutual Significance is the only knowledge learned by

the network, and is contained in a series of fascicles which link
two regions in a pairwise fashion. All these fascicles can be
used when performing information processing. In fact, phrases
in this architecture are represented as a set of tokens containing
high mutual significance between each region in the network.
The significance computation by the network is an approx-

imation of the function given above, determined by counting
joint (and independent) occurrences of tokens as exposed to
each mutual significance fascicle. Thus, values less than one
can represent non-random co-occurrences.
The approximation of mutual significance by counting the

co-occurrences is given by the following formula:

Where represents the co-occurrence of tokens and
, and the total occurrences of and respectively,
and the total number of learning events processed by the
mutual significance evaluator.
There are a number of critical properties of the mutual

significance:
The co-occurrence approximation will converge to the
mutual significance once the network has sampled enough
data.
The mutual significance has limited dynamic range.
Given that it represents the number of times chance
that two tokens occur together. Thus, even in practice,
the dynamic range is about 0-250, and can be further
restricted.
The gradation between different levels of mutual sig-
nificance is relatively coarse-grain. When the mutual
significance is used to compare two tokens, very close
values represent equally valid answers.



Given enough data, exposure to new information will leave
the mutual significance unchanged. Consequently, the network
can be continuously learning. Furthermore, given the prop-
erties of the mutual significance stated above, after training
the network’s significance values can be stored as a small,
integer value rather than requiring floating point computation.
(It is further reasonable that neurons could implement a similar
quantity.)

B. Feature Attractor
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Fig. 2. A Simple Feature Attractor

The feature attractor learns only the canonical representation
of all tokens in the lexicon. The feature attractor learns by
expressing a token onto region and another token
onto region (in the case of words, , and can, in
fact, be the same token). The network then learns a set of
neural connections between neurons in (ie, ) and neurons
in (ie, ). The connection from to reinforces every
connection between and all neurons expressed on . That
is, there is a connection between all neurons expressed on
and all neurons expressed on , and visa versa. Figure 2

shows the relationship between two neurons, expressed on
region and , expressed on region .
At a later time, neurons can be partially expressed on ,

and by traversing the connections from to and back (
to ), a canonical token can be reconstructed by selecting the
most activated neurons. This forces any expressed token

(even a partial or damaged one) to return to the closes actual
token. Tokens expressed using mutual significance weights (or
a combination of many such tokens being expressed) leads
to the closest token being selected in all but cases of sever
degradation. This is similar to the adaptive resonance theory
and the work of Kohonen [5].
The chosen parameters of and serve to

simply the feature attractor. Although the simulation allows
for a parameterized feature attractor, the parameters selected
for the purpose of the experiment greatly simplify the feature
attractor operation (a single neuron is activated in each region).
This reduces both the time and space complexity of the
simulation. Because the input tokens are pristine (that is, they
are words, rather than visual or other potentially noisy input),
the chosen parameters are feasible.

V. EXPERIMENTAL ARCHITECTURE
This experiment consists of two parts: first, phrases are

extracted from the corpus by learning the mutual significance

between five regions representing a window into the text.
Secondly, after reading the corpus, phrases are extracted using
the mutual significance gathered from the first pass.

B
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Fig. 3. The Experimental Architecture

Figure 3 shows the experimental architecture. Four knowl-
edge bases are used during phrase recognition: , , , and
in the figure. The fascicle learn pre-word, post-word

associations and are applied pairwise between words (0, 1),
(1, 2), (2, 3), and (3, 4). The fascicle learns pre/post-post-
word associations and is applied between word regions (0,
2), (1, 3), and (2, 4). Similarly, the fascicle, learns the
associations between one word, and the word three words past
it, and is applied between regions (0, 3), and (1, 4). Finally,
the fascicle learns the association between the first and last
word in a phrase. It should be noted that a null or blank token
is a valid part of a phrase (that is, three word phrases have two
blank tokens at the end if no significant words appear there).
Each of the word regions in Figure 3 contains two parts:

a neural region, upon which tokens can be expressed, and
its associated feature attractor that chooses the most strongly
expressed token on the region. The feature attractor component
is not depicted in the picture.

A. Feature Attractor Training
After choosing the appropriate word lexicon a single word

feature attractor is constructed to be shared among all neural
regions. The structure is relatively large, and the sharing
reduces the space complexity of the simulation.
Each word in the lexicon has two random token repre-

sentations (which can be the same to reduce lexicon storage
requirements). The shared feature attractor network is used in
each step to snap incomplete or partial tokens into a pristine
token within the lexicon.

B. Mutual Significance Evaluator Initialization
The experiment begins by marching all words in the corpus

through the five word window represented by word regions 0
through 4. Any pairwise mutual significance association (via
the - fascicles) between two non-blank words is learned.
This represents the initial knowledge base used throughout the
experiment. These fascicles represent relatively simple, limited
knowledge, but when combined prove to yield meaningful
higher-level information.
Table I summarizes the total number of learning events for

each phrase detection fascicle in the architecture.



Fascicle Number of Learning Events
A 98,706,035
B 77,429,644
C 62,078,406
D 50,203,717

TABLE I
FASCICLE LEARNING EVENTS

C. Phrase Detection
After the positional associations are understood, they are

used to extract phrases from the corpus. This step is the
most computationally intensive. A phrase is identified when
ALL pairwise mutual significance are greater than a given
threshold, for the purposes of this experiment 1.0. Theoreti-
cally a significance greater than 1.0 represents non-random co-
occurrences. For example, when presented with the window:
university of iowa and the, the following mutual
significance evaluations are made:

of iowa and the
university 10.45 76.42 0.743 0.594
of 1.532 n/a n/a

TABLE II
EXAMPLEMUTUAL SIGNIFICANCE EVALUATION OF A PHRASE

Table II shows the full mutual significance expansion of
the phrase using all knowledge fascicles. The extracted phrase
is university of iowa. On the first pass, “and” and
“the” are eliminated from the phrase due to their low mutual
significance with “university” as expressed through fascicles
and respectively. The remaining tokens expressed in word
regions 0, 1, and 2 are used to form a hierarchical token whose
mutual significance is learned by repeated exposure throughout
the corpus.
Other identified phrases beginning with university of

are:
university of california
university of southern california
university of notre dame
university of chicago
university of pennsylvania
university of pennsylvania library

Naturally some phrases are not as clean because
the network’s exposure to the terms, even in a very
large corpus, is small. For example, the network, when
exposed to university of texas at austin
identified university, university of
university of texas, and
university of texas at as phrases, but failed
to pick up the word austin because
through the use of fascicle . The occurrence in the corpus
of the full term is very low.
Some other example phrases include:
department of art
department of chemistry
department of germanic and slavic

department of computer science
department of justice
department of state
department of religion and philosophy
department of mechanical engineering
department of internal medicine

Naturally the addition of a sixth neural region would
have undoubtedly given department of ger-
manic and slavic languages. (The “university
of” and “department of” samplings were chosen simply to
make the search for examples tractable. All examples are
taken from the raw early learning output of the network.

VI. RESULTS

Phrase Length Number of Unique Phrases Detected
2 102,104
3 59,364
4 20,037
5 14,268

TABLE III
UNIQUE PHRASES DETECTED

After the phrase detector was constructed, it was exposed to
the original text corpus to determine how many unique phrases
were detected within the corpus. These results are summarized
in Table III. Aside from the fact that the phrases emitted by
the network are rational to human beings, the relatively large
number of unique phrases discovered demonstrates the success
of the system.
Although the numbers may appear relatively small, it should

be noted that the phrase “university of” appears 1,305 times
in the text corpus. Thus, 102,104 unique two-word phrases
is, in fact, a relatively large number. By the same token, the
system is also capable of detecting the phrase “real time”,
which appears only 10 times in the corpus. In total, 372,787
phrase instances exist within the 150M word corpus.
Given the size of the corpus, the approximations of the

mutual significance values have successfully converged. Con-
sequently, exposing the network to new data produces phrase
detections in nearly identical ratios.

VII. CONCLUSIONS AND FUTURE WORK

This work described the implementation of a phrase de-
tection system using Hecht-Nielsen’s proposed model of the
thalamacortex. The system automatically extracted 195,773
unique phrases from a 150 million word text corpus. The
system’s learning is unsupervised, and requires only exposure
to the text corpus itself. The computation and memory require-
ments of the system are relatively modest.
The future work in this area consists of two critical parts:

first, increasing the size of the experiment; and second,
increasing the functionality. In terms of increasing the ex-
periment’s size, both the size of the text corpus and the
number of neural regions will be expanded. In particular, initial
experimentation shows that detecting 9 or 10 word phrases
using the same architecture is feasible. The use of a larger,



and perhaps more well structured corpus should enhance the
results.
In terms of increasing the functionality of the system, there

are again two primary components: first, the same structure is
capable of determining word synonymy; second, the addition
of Hecht-Nielsen’s proposed hierarchical abstractor neural
network can be used to create unitary token representations for
phrases. However, both of these enhancements are contingent
upon increasing the size of the experimental system.
Additionally, it should be noted that the same architecture

can be used to detect word synonymy. The same knowledge
fascicles can be used to project word synonyms into a given
region and the feature attractor can be used to select (in the
correct order) the best answers.
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