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Abstract— This paper compares the SPEC Integer and Floating
Point suites to a set of real-world applications for high perfor-
mance computing at Sandia National Laboratories. These appli-
cations focus on the high-end scientific and engineering domains,
however the techniques presented in this paper are applicable to
any application domain. The applications are compared in terms
of three memory properties: first, temporal locality(or reuse over
time); second, spatial locality (or the use of data “near” data
that has already been accessed); and third,data intensiveness
(or the number of unique bytes the application accesses). The
results show that real world applications exhibit significantly
less spatial locality, often exhibit less temporal locality, and have
much larger data sets than the SPEC benchmark suite. They
further quantitatively demonstrates the memory properties of
real supercomputing applications.

Index Terms— B.8.2 Performance Analysis and Design Aids,
C.1.0 General, C.4.c Measurement techniques, C.4.g Measure-
ment, evaluation, modeling, simulation of multiple-processor
systems

I. I NTRODUCTION

The selection of benchmarks relevant to the supercomputing
community is challenging at best. In particular, there is a
discrepancy between the workloads that are most extensively
studied by the computer architecture community, and the codes
relevant to high performance computing. This paper exam-
ines these differencesquantitativelyin terms of the memory
characteristics of a set of a real applications from the high-
end science and engineering domain as they compare to the
SPEC CPU2000 benchmark suite, and more general High
Performance Computing (HPC) benchmarks. The purpose of
this paper is two-fold: first to demonstrate what general
memory characteristics the computer architecture community
should look for when identifying benchmarks relevant to HPC
(and how they differ from SPEC); and second, to quantitatively
explain application’s memory characteristics to the HPC com-
munity, which often relies on intuition when discussing mem-
ory locality. Finally, although most studies discuss temporal
and spatial locality when referring to memory performance,
this work introduces a new measuredata intensivenessthat
serves as the biggest differentiator in application properties
between real applications and benchmarks. These techniques
can be applied to any architecture-independent comparison
of any benchmark or application suite, and this study could
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be repeated for other markets of interest. The three key
characteristics of the application are:

1) Temporal Locality: the reuse over time of a data item
from memory;

2) Spatial Locality: the use of data items in memory near
other items that have already been used; and,

3) Data Intensiveness: the amount of unique data the ap-
plication accesses.

Quantifying each of these three measurements is extremely
difficult (see Section IV and Section II). Beyond quantitatively
defining the measurements, there are two fundamental prob-
lems: first, choosing the applications to measure; and second,
performing the measurement in an architecture-independent
fashion that allows general conclusions to be drawn about the
application rather than specific observations of the applica-
tions performance on one particular architecture. This paper
addresses the former problem by using a suite of real codes
that consume significant compute time at Sandia National
Laboratories; and it addresses the latter by defining the metrics
to be orthogonal to each other, and measuring them in an
architecture independent fashion. Consequently, these results
(and the techniques used to generate them) are applicable for
comparing any set of benchmarks or applications memory
properties without regard to how those properties perform on
any particular architectural implementation.

The remainder of this paper is organized as follows: Section
II examines the extensive related work in measuring spatial
and temporal locality, as well as application’s working sets;
Section III describes the Sandia integer and floating point ap-
plications, as well as the SPEC suite; Section IV quantitatively
defines the measures of temporal locality, spatial locality,
and data intensiveness; Section V compares the application’s
properties; Section VI presents the results; and Section VII
ends with the conclusions.

II. RELATED WORK

Beyond the somewhat intuitive definitions of spatial and
temporal locality provided in computer architecture text books
[14], [27], there have been numerous attempts to quantitatively
define spatial and temporal locality [37]. Early research in
computer architecture [7] examinedworking sets, or the data
actively being used by a program, in the context of paging.
That work focused on efficiently capturing the working set in
limited core memory, and has been an active area of research
[9], [31], [35].
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More recent work is oriented towards addressing the mem-
ory wall. It examines the spatial and temporal locality prop-
erties of cache accesses, and represent modern hierarchical
memory structures [6], [10], [32]. Compiler writers have also
extensively examined the locality properties of applications in
the context of code generation and optimization [11], [12].

In addition to definitions that are continuously refined,
the methodology for modeling and measuring the working
set has evolved continuously. Early analytical models were
validated by small experiments [7], [9], [31], [35], while
modern techniques have focused on the use of trace-based
analysis and full system simulation [18], [21], [32].

Because of its preeminence in computer architecture bench-
marks, the SPEC suite has been extensively analyzed [12],
[18], [19], [21], [33], as have other relevant workloads such
as database and OLTP applications [3], [6], [20].

Finally, the construction of specialized benchmarks such
as the HPC Challenge RandomAccess benchmark [8] or the
STREAM benchmark [22] is specifically to address memory
performance. Real world applications on a number of plat-
forms have been studied extensively [26], [36].

III. A PPLICATIONS AND BENCHMARKS

This section describes a set of floating point and integer
applications from Sandia National Laboratories, as well as
the SPEC Floating Point and Integer benchmark suites to
which they will be compared. The HPC Challenge RandomAc-
cess benchmark, which measures random memory accesses
in GUPS (Giga-Updates Per Second), and the STREAM
benchmark, which measures effective bandwidth, are used as
comparison points to show very basic memory characteristics.
Finally, LINPACK, the standard supercomputing benchmark
used to generate the Top500 list is included for comparison.
In the case of MPI codes, the user portion of MPI calls is
included in the trace.

A. Floating Point Benchmarks

Real scientific applications tend to be significantly different
from common processor benchmarks, such as the SPEC suite.
Their datasets are larger, the applications themselves aremore
complex, and they are designed to run on large-scale machines.
The following benchmarks were selected to represent critical
problems in supercomputing seen by the largest scale deploy-
ments in the United States. The input sets were all chosen to be
representative of real problems, or, when they are benchmark
problems, are the typical performance evaluation benchmarks
used during new system deployment. Two of the codes are
benchmarks, sPPM (see Section III-A.5), which is part of the
ASCI 7x benchmark suite (that set requirements for the ASCI
Purple supercomputer), and Cube3 which is used as a simple
driver for the Trilinos linear algebra package. The sPPM code
is a slightly simplified version of a real-world problem, and,
in the case of Trilinos, linear algebra is so fundamental to
many areas of scientific computing that studying core kernels
is significantly important.

All of the codes are written for MPPs using the MPI
programming model, but, for the purposes of this study, were

traced as a single node run of the application. Even without the
use of MPI the codes are structured to be MPI-scalable. Other
benchmarking (both performance register and trace-based)has
shown that the local memory access patterns for a single node
of the application and serial runs are substantially the same.

1) LAMMPS: LAMMPS represents a classic molecular
dynamics simulation designed to represent systems at the
atomic or molecular level [28], [29]. The program is used
to simulate proteins in solution, liquid crystals, polymers,
zeolites, and simple Lenard-Jones systems. The version under
study is written in C++, and two significant inputs were chosen
for analysis:

• Lenard Jones Mixture: This input simulated a 2048 atom
system consisting of three different types;

• Chain: simulates 32000 atoms and 31680 bonds.

LAMMPS consists of approximately 30,000 lines of code.
2) CTH: CTH is a multi-material, large deformation, strong

shock wave, solid mechanics code developed over the last
three decades at Sandia National Laboratories [16]. CTH
has models for multi-phase, elastic viscoplastic, porous and
explosive materials. CTH supports multiple types of meshes:

• Three-dimensional rectangular meshes;
• two-dimensional rectangular and cylindrical meshes; and
• one-dimensional rectilinear, cylindrical, and spherical

meshes.

It uses second-order accurate numerical methods to reduce
dispersion and dissipation and produce accurate, efficient
results. CTH is used extensively within the Department of En-
ergy laboratory complexes for studying armor/anti-armor inter-
actions, warhead design, high explosive initiation physics and
weapons safety issues. It consists of approximately 500,000
lines of Fortran and C.

CTH has two modes of operation: with or without adaptive
mesh refinement (AMR)1. Adaptive mesh refinement changes
the application properties significantly and is useful for only
certain types of input problems. One AMR problem and two
non-AMR problems were chosen for analysis.

Three input sets were examined:

• 2-Gas:The input set uses an80×80×80 mesh to simulate
two gases intersecting on a 45 degree plane. This is the
most “benchmark-like” (e.g., simple) input set, and is
included to better understand how representative it is of
real problems.

• Explosively Formed Projectile (EFP): The simulation
represents a simple Explosively Formed Projectile (EFP)
that was designed by Sandia National Laboratories staff.
The original design was a combined experimental and
modeling activity where design changes were evaluated
computationally before hardware was fabricated for test-
ing. The design features a concave copper liner that is
formed into an effective fragment by the focusing of
shock waves from the detonation of the high explosive.

1AMR typically uses graph partitioning as part of the refinement, two
algorithms for which are part of the integer benchmarks under study. One
of the most interesting results of including a code like CTH in a “benchmark
suite” is its complexity.
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The measured fragment size, shape, and velocity is accu-
rately (within 5%) modeled by CTH.

• CuSt AMR: This input problem simulates a 4.52 km/s
impact of a 4 mm copper ball on a steel plate at a 90
degree angle. Adaptive mesh refinement is used in this
problem.

3) Cube3: Cube3 is meant to be a generic linear solver
and drives the Trilinos [15] frameworks for parallel linear
and eigensolvers. Cube3 mimics a finite element analysis
problem by creating a beam of hexagonal elements, then
assembling and solving a linear system. The problem can
be varied by width, depth, and degrees of freedom (e.g.,
temperature, pressure, velocity, or whatever physical modeling
the problem is meant to represent). The physical problem
is three dimensional. The number of equations in the linear
system is equal to the number of nodes in the mesh multiplied
by the degrees of freedom at each node. There are two variants
based on how the sparse matrices are stored:

• CRS: a 55x55 sparse compressed row system; and
• VBR: a 32x16 variable block row system.
These systems were chosen to represent a large system of

equations.
4) MPSalsa: MPSalsa performs high resolution 3D simu-

lations of reacting flow problems [34]. These problems require
both fluid flow and chemical kinetics modeling.

5) sPPM: The sPPM [5] benchmark is part of the ASCI
Purple benchmark suite as well as the7× application list for
ASCI Red Storm. It solves a 3D gas dynamics problem on
a uniform Cartesian mesh using a simplified version of the
PPM (Piecewise Parabolic Method) code. The hydrodynamics
algorithm requires three separate sweeps through the mesh
per time step. Each sweep requires approximately 680 flops
to update the state variables for each cell. The sPPM code
contains over 4000 lines of mixed Fortran 77 and C routines.
The problem solved by sPPM involves a simple, but strong
(about Mach 5) shock propagating through a gas with a density
discontinuity.

B. Integer Benchmarks

While floating point applications represent the classic su-
percomputing workload, problems in discrete mathematics,
particularly graph theory, are becoming increasingly preva-
lent. Perhaps most significant of these are fundamental graph
theory algorithms. These routines are important in the fields
of proteomics, genomics, data mining, pattern matching and
computational geometry (particularly as applied to medicine).
Furthermore, their performance emphasizes the critical need to
address the von Neumann bottleneck in a novel way. The data
structures in question are very large, sparse, and referenced
indirectly (e.g., through pointers) rather than as regular arrays.
Despite their vital importance, these applications are signifi-
cantly underrepresented in computer architecture research, and
there is currently little joint work between architects andgraph
algorithms developers.

In general, the integer codes are more “benchmark” prob-
lems (in the sense that they use non-production input sets),
heavily weighted towards graph theory codes, than are the
floating point benchmarks.

1) Graph Partitioning: There are two large-scale graph
partitioning heuristics included here: Chaco [13] and Metis
[17]. Graph partitioning is used extensively in automationfor
VLSI circuit design, static and dynamic load balancing on
parallel machines, and numerous other applications. The input
set in this work consists of a 143,437 vertex and 409,593
edge graph to be partitioned into 1,024 balanced parts (with
minimum edge cut between partitions).

2) Depth First Search (DFS):DFS implements a Depth
First Search on a graph with 2,097,152 vertices and 25,690,112
edges. DFS is used extensively in higher-level algorithms,
including identifying connected components, tree and cycle
detection, solving the two-coloring problem, finding Articula-
tion Vertices (e.g., the vertex in a connected graph that, when
deleted, will cause the graph to become a disconnected graph),
and topological sorting.

3) Shortest Path:Shortest Path computes the shortest path
on a graph of 1,048,576 vertices and 7,864,320 edges, and in-
corporates a breadth first search. Extensive applications exist in
real world path planning and networking and communications.

4) Isomorphism: The graph isomorphism problem deter-
mines whether or not two graphs have the same shape or
structure. Two graphs are isomorphic if there exists a one-
to-one mapping between vertices and edges in the graph
(independent of how those vertices and edges are labeled).
The problem under study confirms that two graphs of 250,000
vertices and 10 million edges are isomorphic. There are
numerous applications in finding similarity (particularly, sub-
graph isomorphism) and relationships between two differently
labeled graphs.

5) BLAST: The Basic Local Alignment Search Tool
(BLAST) [1] is the most heavily used method for quickly
searching nucleotide and protein databases in biology. The
algorithm attempts to find both local and global alignment
of DNA nucleotides, as well identifying regions of similarity
embedded in two proteins. BLAST is implemented as a
dynamic programming algorithm.

The input sequence chosen was obtained by training a
hidden Markov model on approximately 15 examples of
piggyBac transposons from various organisms. This model was
used to search the newly assembled aedes aegypti genome (a
mosquito). The best result from this search was the sequence
used in the blast search. The target sequence obtained was
blasted against the entire aedes aegypti sequence to identify
other genes that could be piggyBac transposons, and to double
check that the subsequence is actually a transposon.

6) zChaff: The zChaff program implements the Chaff
heuristic [23] for finding solutions to the Boolean satisfiability
problem. A formula in propositional logic issatisfiableif there
exists an assignment of truth values to each of its variables
that will make the formula true. Satisfiability is critical in
circuit validation, software validation, theorem proving, model
analysis and verification, and path planning. The zChaff input
comes from circuit verification and consists of 1,534 Boolean
variables, 132,295 clauses with five instances, that are all
satisfiable.
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TABLE I

SPEC CPU2000 INTEGERSUITE

Benchmark Lang. Description
164.gzip C Data Compression
175.vpr C FPGA Placement and Routing
176.gcc C GNU C Compiler
181.mcf C Combinatorial Optimization
186.crafty C Chess
197.parser C Word Processing
252.eon C++ Visualization
253.perlbmk C PERL
254.gap C Group Theory
255.vortex C Object Oriented Database
256.bzip2 C Data compression
300.twolf C VLSI Placement and Routing

C. SPEC

The SPEC CPU2000 suite is by far the most currently
studied benchmark suite for processor performance [4]. This
work uses both the SPEC-Integer and SPEC-FP components
of the suite, as summarized in Tables I and II respectively, as
its baseline comparison for benchmark evaluation.

1) SPEC Integer Benchmarks:The SPEC Integer Suite,
summarized in Table I, is by far the most studied half of the
SPEC suite. It is meant to generally represent workstation class
problems. Compiling (176.gcc), compression (164.gzip and
256.bzip2), and systems administration tasks (253.perlbmk)
have many input sets in the suite. These tasks tend to be some-
what streaming on average (the perl benchmarks, in particular,
perform a lot of line-by-line processing of data files). The
more scientific and engineering oriented benchmarks (175.vpr,
181.mcf, 252.eon, 254.gap, 255.vortex, and 300.twolf) are
somewhat more comparable to the Sandia integer benchmark
suite. However selectively choosing benchmarks from SPEC
produces generally less accurate comparisons than using the
entire suite (although it would lessen the computational re-
quirements for analysis significantly).

It should be noted that the SPEC suite is specifically
designed to emphasize computational rather then memory
performance. Indeed, other benchmark suites, such as the
STREAM benchmark or RandomAccess focus much more
extensively on memory performance. However, given the
nature of the memory wall, what is important is a mix of
the two. SPEC, in this work, represents the baseline only
because it is, architecturally, the most studied benchmark
suite. Indeed, a benchmark such as RandomAccess would
undoubtedly overemphasize the memory performance at the
expense of computation, as compared to the real-world codes
in the Sandia suite.

2) SPEC Floating Point Benchmarks:The SPEC Floating
Point suite is summarized in Table II, and primarily represents
scientific applications. At first glance, these applications would
appear very similar to the Sandia Floating Point suite; however
the scale of the applications (in terms of execution time, code
complexity, and input set size) differs significantly.

TABLE II

SPEC FLOATING POINT SUITE

Benchmark Lang Description
168.wupwise F77 Quantum Chromodynamics
171.swim F77 Shallow Water modeling
172.mgrid F77 Multi-grid Solver
173.applu F77 Parabolic PDEs
177.mesa C 3d Graphics
178.galgel F90 Comp. Fluid Dynamics
179.art C Adaptive Resonance Theory
183.equake C Seismic Wave Propagation
187.facerec F90 Face Recognition
188.ammp C Computational Chemistry
189.lucas F90 Primary Number Testing
191.fma3d F90 Finite Element Crash Simulation
200.sixtrack F77 High Energy Physics Accelerator
301.apsi F77 Pollutant Distribution

D. RandomAccess

The RandomAccess benchmarks is part of the HPC Chal-
lenge suite [8] and measures the performance of the memory
system by updating random entries in a very large table
that is unlikely to be cached. This benchmark is specifically
designed to exhibit very low spatial and temporal locality,
and a very large data set (as the table update involves very
little computation). It represents the most extreme of memory
intensive codes, and is used as a comparison point to the
benchmarks and real applications in this work.

E. STREAM

The STREAM benchmark [22] is used to measure sustain-
able bandwidth on a platform and does so via four simple
operations performed non-contiguously on three large arrays:

• Copy: a(i) = b(i)
• Scale:a(i) = q ∗ b(i)
• Sum: a(i) = b(i) + c(i)
• Triad: a(i) = b(i) + q ∗ c(i)

To measure the performance of main memory, the STREAM
rule is that the data size is scaled to four times the size of
the platform’s L2 cache. Because this work is focused on
architecture independent numbers, the each array size was
scaled to 32MB, which is reasonably large for a workstation.

IV. M ETHODOLOGY AND METRICS

This work evaluates the temporal and spatial locality char-
acteristics of applications separately. This section describes
the methodology used in this work and formally defines
the temporal locality, spatial locality, and data intensiveness
measures.

A. Methodology

The applications in this were each traced using the Amber
instruction trace generator [2] for the PowerPC. Trace files
containing 4 billion sequential instructions were generated by
identifying and capturing each instruction executed in critical
sections of the program. The starting point for each trace was
chosen using a combination of performance register profiling
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of the memory system, code reading, and, in the case of SPEC,
accumulated knowledge of good sampling points. The advice
of application experts was also used for the Sandia codes. The
traces typically represent multiple executions of the mainloop
(multiple time steps for the Sandia floating point benchmarks).
These traces have been used extensively in other work, and are
well understood [25].

B. Temporal Locality

The application’stemporal working setdescribes itstem-
poral locality. As in prior work [25], a temporal working
set of sizeN is modeled as anN byte, fully associative,
true least recently used cache with native machine word
sized blocks. The hit rate of that cache is used to describe
the effectiveness of the fixed-size temporal working set at
capturing the application’s data set. The same work found
that the greatest differentiation between conventional and
supercomputer applications occurred in the 32KB-64KB level
one cache sized region of the temporal working set. The
temporal locality in this work is given by a temporal working
set of size 64 KB. The temporal working set is measured over a
long-studied 4 billion instruction trace from the core of each
application. The number of instructions is held constant for
each application. This puts the much shorter running SPEC
benchmark suite on comparable footing to the longer running
supercomputing applications.

It should be noted that there is significant latitude in the
choice of temporal working set size. The choice of a level
one cache sized working set is given for two reasons: first,
it has been demonstrated to offer the greatest differentiation
of applications between the floating point benchmarks in this
suite and SPEC FP; and second, while there is no direct map to
a conventionally constructed L1 cache, the L1 hit rate strongly
impacts performance. There are two other compelling choices
for temporal working set size:

1) Level 2 Cache Sized:in the 1-8 MB region. Arguably,
the hit rate of the cache closest to memory most impacts
performance (given very long memory latencies).

2) Infinite: describes the temporal hit rate required to
capture the application’s total data set size.

Given N memory accesses,H of which hit the cache
described above, the temporal locality is given by:H

N
.

C. Spatial Locality

Measuring the spatial locality of an application may be the
most challenging aspect of this work. Significant prior work
has examined it as the application’s stride of memory access.
The critical measurement is how quickly the application con-
sumes all the data presented to it in a cache block. Thus,
given a cache block size, and a fixed interval of instructions,
the spatial locality can be described as the ratio of data the
application actually uses (through a load or store) to the cache
line size. This work uses an instruction interval of1, 000
instructions, and a cache block size of 64-bytes. For this
work, every 1, 000 instruction window in the application’s
4 billion instruction trace is examined for unique loads and

Store $3, 0xA0000

0xA0000 0xA0004 0xB0000...

Load $1, 0xA0000
Load $2, 0xA0004
Load $3, 0xB0000
Mul $1, $1, $2
Add $1, $1, $3

Fig. 1. An example of temporal locality, spatial locality, and data intensive-
ness.

stores. Those loads and stores are then clustered into 64-byte
blocks, and the ratio of used to unused data in the block is
computed. The block size is chosen as a typical conventional
cache system’s block size. There is much more latitude in
the instruction window size. It must be large enough to allow
for meaningful computation, while being small enough to
report differentiation in the application’s spatial locality. For
example, a window size of the number of instructions in the
application should report that virtually all cache lines are 100%
used. The1, 000 instruction window was chosen based on prior
experience with the applications [24].

Given U1000 unique bytes accessed in an average interval
of 1,000 instructions that are clustered intoL 64-byte cache
lines, the spatial locality is given byU

64L
.

D. Data Intensiveness

One critical yet often overlooked metric of an application’s
memory performance is itsdata intensiveness, or the total
amount of unique data that the application accesses (regardless
of ordering) over a fixed interval of instructions. Over the
course of the entire application, this would be the application’s
memory footprint. This is not fully captured by the measure-
ments given above, and it is nearly impossible to determine
from a cache miss rate. This differs from the application’s
memory footprintbecause it only includes program data that
is accessed via a load or store (where the memory footprint
would also include program text). Because a cache represents
a single instantiation used to capture an application’s working
set, a high miss rate could be more indicative of the application
accessing a relatively small amount of memory in a temporal
order that is poorly suited to the cache’s parameters, or that
the application exhibits very low spatial locality. It is not nec-
essarily indicative of the application accessing a large data set,
which is critical to supercomputing application performance.
This work presents the data intensiveness as the total number
of unique bytes that the application’s trace accessed over its
4 billion instruction interval.

This is directly measured by counting the total number of
unique bytes accessed over the given interval of 4 billion
instructions. This is the same as the unique bytes measure
given above, except it is measured over a larger interval (U4B).

E. An Example

Figure 1 shows an example instruction sequence. Assuming
that this is the entire sequence under analysis, each of the
metrics given above is computed as follows:
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Temporal Locality: is the hit rate of a fully associa-
tive cache. The first 3 loads in the sequence (of0xA0000,
0xA0004, and0xB0000) miss the cache. The final store (to
0xA0000) hits the item in the cache that was loaded 3 memory
references prior. Thus, the temporal locality is:

1 hit

4 memory references
= 0.25

Spatial Locality: is the ratio of used to unused bytes in
a 64-byte cache line. Assuming that each load requests is
32-bits, there are two unique lines requested,0xA0000 (to
0xA0040), and0xB0000 (to 0xB0040). Two 32-bit words are
consumed from0xA0000, and 1 32-bit word from0xB0000.
The spatial locality is calculated as:

12 consumed bytes

128 requested bytes
= 0.09375

Data Intensiveness:is the total number of unique bytes
consumed by the stream. In this case, 3 unique 32-bit words
are requested, for a total of 12 bytes.

V. I NITIAL OBSERVATIONS OFPROGRAM

CHARACTERISTICS
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Figure 2 shows the instruction mix breakdown for the
benchmark suites. Of particular importance is that the Sandia
Floating Point applications perform significantly moreinteger
operations than their SPEC Floating Point counterparts, in
excess of1.66 times the number of integer operations, in fact.
This is largely due to the complexity of the Sandia applications
(with many configuration operations requiring integer tests,
table look ups requiring integer index calculations, etc.)as
well as their typically more complicated memory addressing
patterns [30]. This is largely due to the complexity of the
algorithm, and the fact that significantly more indirectionis
used in memory address calculations. Additionally, in the case

of the floating point applications, although the Sandia applica-
tions perform only about1.5% more total memory references
than their SPEC-FP counterparts, the Sandia codes perform
11% more loads, and only about2

3
the number of stores,

indicating that the results produced require more memory
inputs to produce fewer memory outputs. The configuration
complexity can also be seen in that the Sandia codes perform
about11% more branches than their SPEC counterparts.

In terms of the integer applications, the Sandia codes
perform about12.8% fewer memory references over the same
number of instructions, however those references are signifi-
cantly harder to capture in a cache. The biggest difference is
that the Sandia Integer codes perform4.23 times the number
of floating point operations as their SPEC Integer counterparts.
This is explained by the fact that three of the Sandia Integer
benchmarks perform somewhat significant floating point com-
putations.

TABLE III

SANDIA INTEGERAPPLICATIONS WITH SIGNIFICANT FLOATING POINT

COMPUTATION

Application Percent Floating Point Instructions
Chaco 15.84%

DFS 14.74%

Isomorphism 13.41%

Table III summarizes the three Sandia Integer Suite ap-
plications with significant floating point work: Chaco, DFS,
and Isomorphism. Their floating point ratios are quite below
the median for SPEC FP (28.69%), but above the Sandia
Floating Point median (10.67%). They are in the integer
category because their primary computation is an integer graph
manipulation, whereas CTH is in the floating point category
even though runs have a lower floating point percentage (a
mean over its three input runs of6.83%), but the floating
point work is the primary computation. For example, Chaco
is a multilevel partitioner and uses spectral partitioningin its
base case, which requires the computation of an eigenvector
(a floating point operation). However, graph partitioning is
fundamentally a combinatorial algorithm, and consequently in
the integer category. In the case of CTH, which is a floating
point application with a large number of integer operations, it
is a shock physics code. The flops fundamentally represent the
“real work”, and the integer operations can be accounted forby
the complexity of the algorithms, and the large number of table
look-ups employed by CTH to find configuration parameters.
In either case, the SPEC FP suite is significantly more floating
point intensive.

VI. RESULTS

The experimental results given by the metrics from Section
IV are presented below. Each graph depicts the temporal
locality on the X-axis, and the spatial locality on the Y-axis.
The area of each circle on the graph depicts each application’s
relative data intensiveness (or the total amount of unique data
consumed over the instruction stream).

Figure 3 provides the summary results for each suite of
applications, and the RandomAccess memory benchmark.
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The Sandia Floating Point suite exhibits approximately36%
greater spatial locality and nearly7% less temporal locality
than its SPEC-FP counterpart. The nearness in temporal local-
ity, and increased spatial locality is somewhat surprisingwhen
taken out of context. One would typically expect scientific
applications to be less well structured. The critical data inten-
siveness measure proves the most enlightening. The Sandia
FP suite accesses over2.6 times the amount of data as SPEC
FP. The data intensiveness is the most important differentiator
between the suites. A larger data set size would reflect signif-
icantly worse performance in any real cache implementation.
Without the additional measure, the applications would appear
more comparable. It should be noted that the increased spatial
locality seen in the Sandia Floating Point applications is
likely because those applications use the MPI programming
model, which generally groups data to be operated upon into a
buffer for transmission over the network (increasing the spatial
locality).

The Sandia integer suite is significantly farther from the
SPEC integer suite in all dimensions. It exhibits close to30%
less temporal locality, nearly40% less spatial locality, and has
a unique data set over5.9 times the size of the SPEC integer
suite.

The LINPACK benchmark shows the highest spatial and
temporal locality of any benchmark, and by far the smallest
data intensiveness (the dot is hardly visible on the graph).It
is over 3,000 times smaller than any of the real world Sandia
applications. It exhibits17% less temporal locality and roughly
the same spatial locality than the Sandia FP suite. The Sandia
Integer suite has half the temporal locality and less than one
third the spatial locality.

The STREAM benchmark showed over 100 times less tem-
poral locality than RandomAccess, and 2.4 times the spatial
locality. However, critically, the data intensiveness forstreams
is 1/95th that of RandomAccess. The Sandia Integer Suite is
only 1% less spatially local than STREAM, indicating that

most of the bandwidth used to fetch a cache line is wasted.
While it is expected that RandomAccess exhibits very low

spatial and temporal locality, given its truly random memory
access pattern, its data set is3.7× the size of the Sandia FP
suite,4.5× the size of the Sandia Integer suite, and9.7× and
26.5× the SPEC floating point and integer suites respectively.

Figure 4(a) shows each individual floating point application
in the Sandia and SPEC suites. On the basis of spatial and
temporal locality measurements alone, the the 177.mesa SPEC
FP benchmark would appear to dominate all others in the suite.
However, it has the second smallest unique data set size in the
entire SPEC suite. In fact, the Sandia FP applications average
over 9 times the data intensiveness of 177.mesa. There are
numerous very small data set applications in SPEC FP, in-
cluding 177.mesa, 178.galgel, 179.art, 187.facerec, 188.ammp,
and 200.sixtrack. In fact, virtually all of the applications from
SPEC FP that are “close” to a Sandia application in terms of
spatial and temporal locality exhibit a much smaller unique
data set. The mpsalsa application from the Sandia suite and
183.equake are good examples. While they are quite near on
the graph, mpsalsa has almost17 times the unique data set
of equake. 183.equake is also very near the mean spatial
and temporal locality point for the entire Sandia FP suite,
except that the Sandia applications average more than15 times
183.equake’s data set size.

Unfortunately, it would be extremely difficult to identify
a SPEC FP application that is “representative” of the Sandia
codes (either individually, or on average). Often papers choose
a subset of a given benchmark suite’s applications when pre-
senting the results. Choosing the five applications in SPEC FP
with the largest data intensiveness (168.wupwise, 171.swim,
173.applu, 189.lucas, 301.apsi), and 183.equake (becauseof
its closeness to the average and to mpsalsa) yields a suite that
averages90% of the Sandia suite’s temporal locality,86% of
its temporal locality,75% of it’s data intensiveness. While
somewhat far from “representative”, particularly in termsof
data intensiveness, this subset is more representative of the
real applications than the whole.

Several interesting Sandia applications are shown on the
graph. The CTH application exhibits the most temporal lo-
cality, but relatively low spatial locality, and a relatively
small data set size. The LAMMPS (lmp) molecular dynamics
code is known to be compute intensive, but it exhibits a
relatively small memory footprint, and shows good memory
performance. The temporal and spatial locality measures are
quite low. SPPM exhibits very high spatial locality, very low
temporal locality, and a moderate data set size.

Figure 4(b) depicts the Sandia and SPEC Integer bench-
mark suites. These applications are strikingly more different
than the floating point suite. All of the applications exhibit
relatively low spatial locality, although the majority of Sandia
applications exhibit significantly less spatial locality than their
SPEC counterparts. The DFS code in the Sandia suite is the
most “RandomAccess-like”, with 255.vortex in the SPEC suite
being the closest counter part in terms of spatial and temporal
locality. 255.vortex’s temporal and spatial locality are within
25% and 15% of DFS’ respectively. However, once again,
DFS’s data set size is over19 times that of 255.vortex’s.
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Fig. 4. (a) Integer and (b) Floating Point Applications Temporal vs. Spatial Locality and Data Intensiveness.

300.twolf actually comes closest in terms of spatial and
temporal locality to representing the “average” Sandia Integer
application, however, the average Sandia code has nearly140
times the data set size.

VII. C ONCLUSIONS

This work has measured the temporal and spatial locality,
and the relative data intensiveness of a set of real world
Sandia applications, and compared them to the SPEC Integer
and Floating Point suites, as well as the RandomAccess
memory benchmark. While the SPEC floating point suite
exhibits greater temporal locality and less spatial locality
than the Sandia floating point suite, it averages significantly
less data intensiveness. This is crucial because the number
of unique items consumed by the application can affect the
performance of hierarchical memory systems more than the
average efficiency with which those items are stored in the
hierarchy.

The integer suites showed even greater divergence in all
three dimensions (temporal locality, spatial locality, and data
intensiveness). Many of the key integer benchmarks, which
represent applications of emerging importance, are close to
RandomAccess in their behavior.

This work has further quantitatively demonstrated the dif-
ference between a set of real applications (both current and
emerging) relevant to the high performance computing com-
munity, and the most studied set of benchmarks in computer
architecture. The real integer codes are uniformly harder on
the memory system than the SPEC integer suite. In the case
of floating point codes, the Sandia applications exhibit a
significantly larger data intensiveness, and lower temporal
locality. Because of the dominance of the memory system
in achieving performance, this indicates that architects should
focus on codes with significantly larger data set sizes.

The emerging applications characterized by the Sandia
Integer suite are the most challenging applications (next to

the RandomAccess benchmark). Because of their importance
and their demands on the memory system, they represent a
core group of applications that require significant attention.

Finally, beyond a specific study of one application domain,
this work presents an architecture-independent methodology
for quantifying the difference in memory properties between
any two applications (or suites of applications). This study can
be repeated for other problem domains of interest (the desktop,
multimedia, business, etc.).
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