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Abstract— This paper compares the SPEC Integer and Floating be repeated for other markets of interest. The three key
Point suites to a set of real-world applications for high pefor-  characteristics of the application are:
mance computing at Sandia National Laboratories. These agp

cations focus on the high-end scientific and engineering daams, 1) Temporal Locality: the reuse over time of a data item

however the techniques presented in this paper are applicdd to from memory;
any application domain. The applications are compared in tems 2) Spatial Locality: the use of data items in memory near
of three memory properties: first, temporal locality(or reuse over other items that have already been used; and,

time); second, spatial locality (or the use of data “near” data : . ; _
that has already been accessed); and thirddata intensiveness 3) Data Intensiveness: the amount of unique data the ap

(or the number of unique bytes the application accesses). Eh plication accesses.
results show that real world applications exhibit significantly Quantifying each of these three measurements is extremely
less spatial locality, often exhibit less temporal localit, and have djfficult (see Section IV and Section Il). Beyond quantitaty
][””C’h larger data sets than the SPEC benchmark suite. They yogining the measurements, there are two fundamental prob-
urther quantitatively demonstrates the memory properties of | - first. ch ina th licati ¢ - and sk
real supercomputing applications. ems: first, choosing the applications to measure; an con
performing the measurement in an architecture-independen
C.1.0 General, C.4.c Measurement techniques, C.4.9 Measur fash!on _that allows general cqnclusmns tq be drawn abcmt_ th
ment, evaluation, modeling, simulation of multiple-processor @Pplication rather than specific observations of the applic
systems tions performance on one particular architecture. Thisepap
y . .
addresses the former problem by using a suite of real codes
that consume significant compute time at Sandia National
) Laboratories; and it addresses the latter by defining theicaet
The selection of benchmarks relevant to the supercomputiggpe orthogonal to each other, and measuring them in an
community is challenging at best. In particular, there is gchitecture independent fashion. Consequently, thesdtse
relevant to high performance computing. This paper examroperties without regard to how those properties perform o
ines these differenceguantitativelyin terms of the memory any particular architectural implementation.
characteristics of a set of a real applications from the high The remainder of this paper is organized as follows: Section
end science and engineering domain as they compare 1o fhgyamines the extensive related work in measuring spatial
SPEC CPU2000 benchmark suite, and more general Highq temporal locality, as well as application's workingsset
Performance Computing (HPC) benchmarks. The purpose¥tion 111 describes the Sandia integer and floating pgint a
this paper is two-fold: first to demonstrate what genergjications, as well as the SPEC suite; Section IV quantisfi
memory characteristics the computer architecture comiyunefines the measures of temporal locality, spatial logality
should look for when identifying benchmarks relevant to HPGq gata intensiveness; Section V compares the applitation

(and how they differ from SPEC); and second, to quantititiveyrgperties: Section VI presents the results; and Sectidn VI
explain application’s memory characteristics to the HP@1€o ogs with the conclusions.

munity, which often relies on intuition when discussing mem
ory locality. Finally, although most studies discuss tenapo
and spatial locality when referring to memory performance,
this work introduces a new measudata intensivenesthat Beyond the somewhat intuitive definitions of spatial and
serves as the biggest differentiator in application proger temporal locality provided in computer architecture teabks
between real applications and benchmarks. These tectmigllet], [27], there have been numerous attempts to quantdgti
can be applied to any architecture-independent comparigigfine spatial and temporal locality [37]. Early research in
of any benchmark or application suite, and this study couf®mputer architecture [7] examineebrking setsor the data
actively being used by a program, in the context of paging.
fRichard Murphy is at Sandia National Laboratories. Sandia@imul- That work focused on efficiently capturing the working set in

tiprogram laboratory operated by Sandia Corporation, akheed Martin limited d has b . f h
Company, for the United States Department of Energy’s MatidNuclear Imited core memory, an as been an active area of researc

Security Administration under contract DE-AC04-94AL8800 [9], [31], [35].
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More recent work is oriented towards addressing the mermnaced as a single node run of the application. Even withwaut t
ory wall. It examines the spatial and temporal locality propuse of MPI the codes are structured to be MPI-scalable. Other
erties of cache accesses, and represent modern hierdrchieachmarking (both performance register and trace-bédmsed)
memory structures [6], [10], [32]. Compiler writers haveal shown that the local memory access patterns for a single node
extensively examined the locality properties of applimasiin  of the application and serial runs are substantially theesam
the context of code generation and optimization [11], [12]. 1) LAMMPS: LAMMPS represents a classic molecular

In addition to definitions that are continuously refineddynamics simulation designed to represent systems at the
the methodology for modeling and measuring the workingtomic or molecular level [28], [29]. The program is used
set has evolved continuously. Early analytical models wete simulate proteins in solution, liquid crystals, polymer
validated by small experiments [7], [9], [31], [35], whilezeolites, and simple Lenard-Jones systems. The versiogr und
modern techniques have focused on the use of trace-basggly is written in C++, and two significant inputs were chrose
analysis and full system simulation [18], [21], [32]. for analysis:

Because of its preeminence in computer architecture bench; Lenard Jones MixtureThis input simulated a 2048 atom
marks, the SPEC suite has been extensively analyzed [12], system consisting oi‘ three different types:

[18], [19], [21], [33], as have other relevant workloadsBUC | Cpain simulates 32000 atoms and 31680 bonds.

as database and OLTP applications [3], [6], [20]. i ) )
Finally, the construction of specialized benchmarks suchAMMPS consists of approximately 30,000 lines of code.
as the HPC Challenge RandomAccess benchmark [8] or the?) CTH: CTH is a multi-material, large deformation, strong

STREAM benchmark [22] is specifically to address memor§hock wave, solid mechanics code developed over the last
performance. Real world applications on a number of pldfiree decades at Sandia National Laboratories [16]. CTH

forms have been studied extensively [26], [36]. has models for multi-phase, elastic viscoplastic, poraut a
explosive materials. CTH supports multiple types of meshes
I1l. APPLICATIONS AND BENCHMARKS « Three-dimensional rectangular meshes;

« two-dimensional rectangular and cylindrical meshes; and
« one-dimensional rectilinear, cylindrical, and spherical
meshes.

This section describes a set of floating point and integer
applications from Sandia National Laboratories, as well as
the SPEC Floating Point and Integer benchmark suites to
which they will be compared. The HPC Challenge RandomAc- It uses second-order accurate numerical methods to reduce
cess benchmark, which measures random memory accesbggersion and dissipation and produce accurate, efficient
in GUPS (Giga-Updates Per Second), and the STREAMsults. CTH is used extensively within the Department of En
benchmark, which measures effective bandwidth, are usedesgy laboratory complexes for studying armor/anti-armeei-
comparison points to show very basic memory charactesistiactions, warhead design, high explosive initiation physind
Finally, LINPACK, the standard supercomputing benchmamkeapons safety issues. It consists of approximately 500,00
used to generate the Top500 list is included for comparisdimes of Fortran and C.

In the case of MPI codes, the user portion of MPI calls is CTH has two modes of operation: with or without adaptive
included in the trace. mesh refinement (AMR) Adaptive mesh refinement changes
the application properties significantly and is useful foftyo

certain types of input problems. One AMR problem and two

A. Floating Point Benchmarks i
N L L ) non-AMR problems were chosen for analysis.
Real scientific applications tend to be significantly diffiet . -
Three input sets were examined:

from common processor benchmarks, such as the SPEC suite. . )
Their datasets are larger, the applications themselvemare ¢ 2-Gas:The input set uses & x 80 x80 mesh to simulate
complex, and they are designed to run on large-scale machine WO gases intersecting on a 45 degree plane. This is the
The following benchmarks were selected to represent atitic =~ Most “benchmark-like” (e.g., simple) input set, and is
problems in supercomputing seen by the largest scale deploy included to better understand how representative it is of
ments in the United States. The input sets were all choseatob el problems. o . _
representative of real problems, or, when they are bendhmar® EXplosively Formed Projectile (EFP): The simulation
problems, are the typical performance evaluation bencksnar ~ fepresents a simple Explosively Formed Projectile (EFP)
used during new system deployment. Two of the codes are that was designed by Sandia National Laboratories staff.
benchmarks, sPPM (see Section 111-A.5), which is part of the ~The original design was a combined experimental and
ASCI 7x benchmark suite (that set requirements for the ASCI Modeling activity where design changes were evaluated
Purple supercomputer), and Cube3 which is used as a simple f:omputatlonqlly before hardware was fabncatgd for test-
driver for the Trilinos linear algebra package. The sPPMecod ~ ing. The design features a concave copper liner that is
is a slightly simplified version of a real-world problem, and ~ formed into an effective fragment by the focusing of
in the case of Trilinos, linear algebra is so fundamental to Shock waves from the detonation of the high explosive.

many areas of scientific computing that studying core kernel

's significantly important. ot oy Vi arc. per of ne-meger benchmarks arioch, One
All of the codes are written for MPPs using the Mpﬁf the most interesting results of including a code like ChHi“benchmark

programming model, but, for the purposes of this study, weseite” is its complexity.



The measured fragment size, shape, and velocity is accud) Graph Partitioning: There are two large-scale graph
rately (within 5%) modeled by CTH. partitioning heuristics included here: Chaco [13] and Bleti
o CuSt AMR: This input problem simulates a 4.52 km/417]. Graph partitioning is used extensively in automation
impact of a 4 mm copper ball on a steel plate at a 99LSI circuit design, static and dynamic load balancing on
degree angle. Adaptive mesh refinement is used in thgarallel machines, and numerous other applications. Tjgt in
problem. set in this work consists of a 143,437 vertex and 409,593
3) Cube3: Cube3 is meant to be a generic linear solvetdge graph to be partitioned into 1,024 balanced parts (with
and drives the Trilinos [15] frameworks for parallel lineaminimum edge cut between partitions).

and eigensolvers. Cube3 mimics a finite element analysisz) Depth First Search (DFS)DFS implements a Depth
problem by creating a beam of hexagonal elements, thefpst Search on a graph with 2,097,152 vertices and 25,690,1
assembling and solving a linear system. The problem cgfges. DFS is used extensively in higher-level algorithms,
be varied by width, depth, and degrees of freedom (e.ghcjuding identifying connected components, tree and esycl
temperature, pressure, velocity, or whatever physicaleiegl jetection, solving the two-coloring problem, finding Actia-

the problem is meant to represent). The physical problefg, vertices (e.g., the vertex in a connected graph thagnwh

is three_dimensional. The number of equations in the |i”?&életed, will cause the graph to become a disconnected graph
system is equal to the number of nodes in the mesh multipligdy topological sorting.

by the degrees of freedom at each node. There are two variants
3) Shortest Path:Shortest Path computes the shortest path

based on how the sparse matrices are stored: ; .
. CRS: a 55x55 sparse compressed row system; and on a graph of 1,048,576 vertices and 7,864,320 edges, and in-
' ’ corporates a breadth first search. Extensive applicatixiasie

o VBR: a 32x16 variable block row system. _ . L
re }World path planning and networking and communications
These systems were chosen to represent a large system

equations. 4) Isomorphism: The graph isomorphism problem deter-

4) MPSalsa: MPSalsa performs high resolution 3D simusmines whether or not two graphs have the same shape or
lations of reacting flow problems [34]. These problems reguistructure. Two graphs are isomorphic if there exists a one-
both fluid flow and chemical kinetics modeling. to-one mapping between vertices and edges in the graph

5) sPPM: The sPPM [5] benchmark is part of the ASCl(independent of how those vertices and edges are labeled).
Purple benchmark suite as well as the application list for The problem under study confirms that two graphs of 250,000
ASCI Red Storm. It solves a 3D gas dynamics problem omrtices and 10 million edges are isomorphic. There are
a uniform Cartesian mesh using a simplified version of thumerous applications in finding similarity (particularub-
PPM (Piecewise Parabolic Method) code. The hydrodynamigpsaph isomorphism) and relationships between two diffigyen
algorithm requires three separate sweeps through the mesieled graphs.

The problem solved by sPPM involves a simple,
(about Mach 5) shock propagating through a gas with a densJJtP’DNA nucleotides, as well identifying regions of similigri

discontinuity. embedded in two proteins. BLAST is implemented as a
dynamic programming algorithm.

_The input sequence chosen was obtained by training a
jdden Markov model on approximately 15 examples of

piggyBac transposons from various organisms. This modsl wa
ed to search the newly assembled aedes aegypti genome (a

theory algorithms. These routines are important in the diel 0squito). The best result from this search was the sequence

of proteomics, genomics, data mining, pattern matching amaed in the_ blast searc_:h. The target sequence obtain_ed was
computational geometry (particularly as applied to mewigi asted against the entire gedes aegypti sequence tofydenti
Furthermore, their performance emphasizes the criticad e other genes that could be plggyBac fransposons, and togoubl
address the von Neumann bottleneck in a novel way. The dﬁtﬁeCk that the subsequence is actually a transposon.
structures in question are very large, sparse, and refedenc 6) zChaff: The zChaff program implements the Chaff
indirectly (e.g., through pointers) rather than as regular arrayseuristic [23] for finding solutions to the Boolean satisfiiép
Despite their vital importance, these applications aramifiig problem. A formula in propositional logic satisfiablef there
cantly underrepresented in computer architecture relseancl  exists an assignment of truth values to each of its variables
there is currently little joint work between architects ayrdph that will make the formula true. Satisfiability is criticah i
algorithms developers. circuit validation, software validation, theorem provjmgodel

In general, the integer codes are more “benchmark” probnalysis and verification, and path planning. The zChaftiinp
lems (in the sense that they use non-production input set)mes from circuit verification and consists of 1,534 Bonlea
heavily weighted towards graph theory codes, than are thariables, 132,295 clauses with five instances, that are all
floating point benchmarks. satisfiable.

B. Integer Benchmarks

While floating point applications represent the classic s
percomputing workload, problems in discrete mathemati
particularly graph theory, are becoming increasingly prev
lent. Perhaps most significant of these are fundamentahgr



TABLE | TABLE Il

SPEC CPU2000NTEGERSUITE SPEC ROATING POINT SUITE

Benchmark | Lang. | Description Benchmark | Lang | Description

164.gzip C Data Compression 168.wupwise| F77 | Quantum Chromodynamics

175.vpr C FPGA Placement and Routing 171.swim F77 | Shallow Water modeling

176.gcc C GNU C Compiler 172.mgrid F77 | Multi-grid Solver

181.mcf C Combinatorial Optimization 173.applu F77 | Parabolic PDEs

186.crafty C Chess 177.mesa C 3d Graphics

197.parser C Word Processing 178.galgel F90 | Comp. Fluid Dynamics

252.eon C++ | Visualization 179.art C Adaptive Resonance Theory

253.perlbmk C PERL 183.equake C Seismic Wave Propagation

254.gap C Group Theory 187.facerec F90 | Face Recognition

255.vortex C Object Oriented Database 188.ammp C Computational Chemistry

256.bzip2 C Data compression 189.lucas F90 | Primary Number Testing

300.twolf C VLSI Placement and Routing 191.fma3d F90 | Finite Element Crash Simulation
200.sixtrack F77 | High Energy Physics Acceleratofr
301.apsi F77 | Pollutant Distribution

C. SPEC

D. RandomAccess

The SPEC CPU2000 suite is by far the most current|¥ The RandomAccess benchmarks is part of the HPC Chal-

studied benchmark suite for processor performance [4]s ThS| nsggnfuge [S] (?;t?nmerzzlége; tgitﬁggfoi;mgniee:rof ;[Zre ;net;nb(l);y
work uses both the SPEC-Integer and SPEC-FP componqﬁ/t y up 9 y arg

of the suite, as summarized in Tables | and Il respectively, &t is unlikely to be cached. This benchmark is specifically

. . ) . 8esigned to exhibit very low spatial and temporal locality,
its baseline comparison for benchmark evaluation. .
and a very large data set (as the table update involves very

1) SPEC Integer Benchmarksthe SPEC Integer Suite, little computation). It represents the most extreme of mgmo
summarized in Table I, is by far the most studied half of thatensive codes, and is used as a comparison point to the
SPEC suite. It is meant to generally represent workstatamssc benchmarks and real applications in this work.
problems. Compiling (176.gcc), compression (164.gzip and
256.bzip2), and systems administration tasks (253.pédlbng  sTREAM

have many input sets in the suite. These tasks tend to be some- . .
what streaming on average (the perl benchmarks, in paaticul el'he STREAM benchmark [27] is used to measure sustain-

perform a lot of line-by-line processing of data files). Thgble bandwidth on a platform and does so via four simple

more scientific and engineering oriented benchmarks (b.r,5_voperat|ons performed non-contiguously on three largeyarra

181.mcf, 252.eon, 254.gap, 255.vortex, and 300.twolf) are® COPY: a(i) = b(i)

somewhat more comparable to the Sandia integer benchmark Scale:a(i) = ¢ b(i)

suite. However selectively choosing benchmarks from SPEC® Sum: a(i) = b(i) + ¢(1)

produces generally less accurate comparisons than using the 111ad: a(i) = b(i) + ¢ (i)

entire suite (although it would lessen the computational re To measure the performance of main memory, the STREAM

guirements for analysis significantly). rule is that the data size is scaled to four times the size of
It should be noted that the SPEC suite is specificalgze _platform’_s L2 cache. Because this work is focus.ed on

?;hltecture independent numbers, the each array size was

designed to emphasize computational rather then mem S :
performance. Indeed, other benchmark suites, such as 8Ied to 32MB, which is reasonably large for a workstation.

STREAM benchmark or RandomAccess focus much more
extensively on memory performance. However, given the
nature of the memory wall, what is important is a mix of This work evaluates the temporal and spatial locality char-
the two. SPEC, in this work, represents the baseline ordgteristics of applications separately. This section riless
because it is, architecturally, the most studied benchmdhe methodology used in this work and formally defines
suite. Indeed, a benchmark such as RandomAccess wollied temporal locality, spatial locality, and data inteesigss
undoubtedly overemphasize the memory performance at theasures.

expense of computation, as compared to the real-world codes

in the Sandia suite. A. Methodology

2) SPEC Floating Point Benchmark§he SPEC Floating  The applications in this were each traced using the Amber
Point suite is summarized in Table II, and primarily représe instruction trace generator [2] for the PowerPC. Trace files
scientific applications. At first glance, these applicatismould containing 4 billion sequential instructions were genedlay
appear very similar to the Sandia Floating Point suite; hvawe identifying and capturing each instruction executed itical
the scale of the applications (in terms of execution timelecosections of the program. The starting point for each trace wa
complexity, and input set size) differs significantly. chosen using a combination of performance register prgfilin

IV. METHODOLOGY AND METRICS



of the memory system, code reading, and, in the case of SPEC, 0xA0000| 0xA0004] *++ |0xBO00O
accumulated knowledge of good sampling points. The advice

of application experts was also used for the Sandia codes. Thaq $1. oxA0000———
traces typically represent multiple executions of the m@@p Load $2, 0xA0004
(multiple time steps for the Sandia floating point benchrajrk Load $3, 0xB0000
These traces have been used extensively in other work, andMil $1, $1, $2

well understood [25]. g?:r :;és%;(i?)oo
) o

B. Temporal Locality r':viegs.sll An example of temporal locality, spatial localityycadata intensive-

The application’stemporal working setlescribes itsem-

poral locality. As in prior work [25], a temporal working )
set of size N is modeled as anv byte, fully associative stores. Those loads and stores are then clustered intoté4-by

true least recently used cache with native machine woP{Pcks, and the ratio of used to unused data in the block is

sized blocks. The hit rate of that cache is used to descrif@mPuted. Th? block size is chosen as a typical conventional

the effectiveness of the fixed-size temporal working set S2che System’s block size. There is much more latitude in

capturing the application’s data set. The same work foulfg instruction window size. It must be large enough to allow

that the greatest differentiation between conventional afP’ Mmeaningful computation, whne-be'mg small enough to

supercomputer applications occurred in the 32KB-64KBIlevEEPOrt differentiation in the application’s spatial loieal For

one cache sized region of the temporal working set. T/&ample, a window size of the number of instructions in the

temporal locality in this work is given by a temporal workingappl'cat'on shOL_JId repqrt tha_t virtually all cache lines 400% _

set of size 64 KB. The temporal working set is measured oveP§€d- The, 000 instruction window was chosen based on prior

long-studied 4 billion instruction trace from the core otka €XPerience with the applications [24]. _

application. The number of instructions is held constamt fo GVen Uiooo unique bytes accessed in an average interval

each application. This puts the much shorter running SPE 1,000 instructions that are clustered info64-byte cache

benchmark suite on comparable footing to the longer runnifiges: the spatial locality is given byfz -

supercomputing applications. .

It should be noted that there is significant latitude in thE: Data Intensiveness

choice of temporal working set size. The choice of a level One critical yet often overlooked metric of an applicat®n’

one cache sized working set is given for two reasons: firsagmory performance is itglata intensivenessor the total

it has been demonstrated to offer the greatest differémiatamount of unique data that the application accesses (regard

of applications between the floating point benchmarks ia thdf ordering) over a fixed interval of instructions. Over the

suite and SPEC FP; and second, while there is no direct magasirse of the entire application, this would be the appgltcet

a conventionally constructed L1 cache, the L1 hit rate gfion memory footprint. This is not fully captured by the measure-

impacts performance. There are two other compelling clsoiceents given above, and it is nearly impossible to determine

for temporal working set size: from a cache miss rate. This differs from the application’s

1) Level 2 Cache Sizedin the 1-8 MB region. Arguably, memory footprinibecause it only includes program data thqt

the hit rate of the cache closest to memory most impadgsaccessed via a load or store (where the memory footprint
performance (given very long memory latencies). ~ Would also include program text). Because a cache repsesent

2) Infinite: describes the temporal hit rate required t8 Single instantiation used to capture an application’skimgr
capture the application’s total data set size. set, a high miss rate could be more indicative of the aptinat

accessing a relatively small amount of memory in a temporal
order that is poorly suited to the cache’s parameters, dr tha
the application exhibits very low spatial locality. It istrmeec-
essarily indicative of the application accessing a larga dat,
C. Spatial Locality which is critical to supercomputing application perforroan

Measuring the spatial locality of an application may be thENiS work presents the data intensiveness as the total numbe
most challenging aspect of this work. Significant prior worRf unique bytes that the application’s trace accessed dser i
has examined it as the application’s stride of memory acceégbillion instruction interval. _

The critical measurement is how quickly the application-con 1Nis is directly measured by counting the total number of
sumes all the data presented to it in a cache block. Thigique bytes accessed over the given interval of 4 billion
given a cache block size, and a fixed interval of instructiongstructions. This is the same as the unique bytes measure
the spatial locality can be described as the ratio of data tBen above, exceptitis measured over a larger intefVak).
application actually uses (through a load or store) to tlohea

line size. This work uses an instruction interval bfooo E- An Example

instructions, and a cache block size of 64-bytes. For thisFigure 1 shows an example instruction sequence. Assuming
work, every 1,000 instruction window in the application’s that this is the entire sequence under analysis, each of the
4 billion instruction trace is examined for unique loads anchetrics given above is computed as follows:

Given N memory accessesd of which hit the cache
described above, the temporal locality is given %/



Percent

Temporal Locality: is the hit rate of a fully associa- of the floating point applications, although the Sandia iappl
tive cache. The first 3 loads in the sequence (©f0000, tions perform only about.5% more total memory references
0xA0004, and 02B0000) miss the cache. The final store (tahan their SPEC-FP counterparts, the Sandia codes perform
02.A0000) hits the item in the cache that was loaded 3 memoiy % more loads, and only abo@ the number of stores,

references prior. Thus, the temporal locality is: indicating that the results produced require more memory
_ inputs to produce fewer memory outputs. The configuration
1 hit =0.25 complexity can also be seen in that the Sandia codes perform
4 memory re ferences about11% more branches than their SPEC counterparts.

Spatial Locality: is the ratio of used to unused bytes in In terms of the integer applications, the Sandia codes
a 64-byte cache line. Assuming that each load requestspi&rform aboutl2.8% fewer memory references over the same
32-bits, there are two unique lines requestédA0000 (to number of instructions, however those references arefsigni
02A0040), and02B0000 (to 02B0040). Two 32-bit words are cantly harder to capture in a cache. The biggest differesce i
consumed fronzA0000, and 1 32-bit word frondxB0000. that the Sandia Integer codes perfotr2a3 times the number

The spatial locality is calculated as: of floating point operations as their SPEC Integer countéspa
19 db This is explained by the fact that three of the Sandia Integer
consumed bytes = 0.09375 benchmarks perform somewhat significant floating point com-
128 requested bytes putations.

Data Intensiveness:is the total number of unique bytes

. ) . TABLE Il

consumed by the stream. In this case, 3 unique 32-bit Wordss | A S . b
ANDIA INTEGERAPPLICATIONS WITH SIGNIFICANT FLOATING POINT

are requested, for a total of 12 bytes.

COMPUTATION

V. INITIAL OBSERVATIONS OFPROGRAM Application | Percent Floating Point Instructions
CHARACTERISTICS Chaco 15.84%
DFS 14.74%
Isomorphism 13.41%
Mean Instruction Mix
100
ool =——1 | Table Ill summarizes the three Sandia Integer Suite ap-

plications with significant floating point work: Chaco, DFS,
80t 1 and Isomorphism. Their floating point ratios are quite below
the median for SPEC FP2§.69%), but above the Sandia
Floating Point median 10.67%). They are in the integer
category because their primary computation is an integggtyr
manipulation, whereas CTH is in the floating point category
even though runs have a lower floating point percentage (a
mean over its three input runs ©f83%), but the floating
point work is the primary computation. For example, Chaco
is a multilevel partitioner and uses spectral partitionimgts
base case, which requires the computation of an eigenvector
(a floating point operation). However, graph partitionirgy i
fundamentally a combinatorial algorithm, and consequyantl
the integer category. In the case of CTH, which is a floating
Sandia EP SPEC EP Sandia Int SPEC INT point application with a large number of integer operatjahs
‘-mteger ALU [l =P [ Branch [ ]Load |:|St0re‘ is a shock physics code. The flops fundamentally represent th
“real work”, and the integer operations can be accountebtyor
Fig. 2. Benchmark Suite Mean Instruction Mix the complexity of the algorithms, and the large number oletab
look-ups employed by CTH to find configuration parameters.
Figure 2 shows the instruction mix breakdown for thén either case, the SPEC FP suite is significantly more flgatin
benchmark suites. Of particular importance is that the Bangpoint intensive.
Floating Point applications perform significantly manéeger
operations than their SPEC Floating Point counterparts, in VI. REsSULTS
excess ofl.66 times the number of integer operations, in fact. The experimental results given by the metrics from Section
This is largely due to the complexity of the Sandia applmagi |V are presented below. Each graph depicts the temporal
(with many configuration operations requiring integer gestlocality on the X-axis, and the spatial locality on the Ysxi
table look ups requiring integer index calculations, etts) The area of each circle on the graph depicts each application
well as their typically more complicated memory addressinglative data intensiveness (or the total amount of unicaia d
patterns [30]. This is largely due to the complexity of theonsumed over the instruction stream).
algorithm, and the fact that significantly more indirectisn ~ Figure 3 provides the summary results for each suite of
used in memory address calculations. Additionally, in thsec applications, and the RandomAccess memory benchmark.




i Benchmark Site Mean Temporal vs. Spatal Locality most of the bandwidth used to fetch a cache line is wasted.
While it is expected that RandomAccess exhibits very low

oor spatial and temporal locality, given its truly random meynor

sk access pattern, its data set3i§ x the size of the Sandia FP
suite,4.5x the size of the Sandia Integer suite, andx and

orr 26.5x the SPEC floating point and integer suites respectively.

Figure 4(a) shows each individual floating point applicatio
in the Sandia and SPEC suites. On the basis of spatial and
temporal locality measurements alone, the the 177.mes& SPE
FP benchmark would appear to dominate all others in the.suite
@ specre However, it has the second smallest unique data set sizein th
entire SPEC suite. In fact, the Sandia FP applications geera
over 9 times the data intensiveness of 177.mesa. There are
STREAM Emerging (Integer) Sandia Applications numerous very small data set applications in SPEC FP, in-
") Randomaccess cluding 177.mesa, 178.galgel, 179.art, 187.facerecah®dp,
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ., and 200.sixtrack. In fact, virtually all of the applicat®from
©on ey 0 %1 SPEC FP that are “close” to a Sandia application in terms of
spatial and temporal locality exhibit a much smaller unique
Fig. 3. Mean Temporal vs. Spatial Locality and Data Intemséss for each data set. The mpsalsa application from the Sandia suite and
benchmark suite. 183.equake are good examples. While they are quite near on
the graph, mpsalsa has almdst times the unique data set
of equake. 183.equake is also very near the mean spatial
The Sandia Floating Point suite exhibits approximat§o and temporal locality point for the entire Sandia FP suite,
greater spatial locality and nearlyf’; less temporal locality except that the Sandia applications average morethdimes
than its SPEC-FP counterpart. The nearness in tempordf 10683 equake’s data set size.
ity, and increased spatial locality is somewhat surprisih@n  Unfortunately, it would be extremely difficult to identify
taken out of context. One would typically expect scientifig SPEC FP application that is “representative” of the Sandia
applications to be less well structured. The critical datan- codes (either individua”y, oron average)_ Often papem)sb
siveness measure proves the most enlightening. The Sangigbset of a given benchmark suite’s applications when pre-
FP suite accesses ovab times the amount of data as SPECsenting the results. Choosing the five applications in SPEC F
FP. The data intensiveness is the most important diffextnti \ith the largest data intensiveness (168.wupwise, 17Mswi
between the suites. A larger data set size would reflectfsigni73.applu, 189.lucas, 301.apsi), and 183.equake (becHuse
icantly worse performance in any real cache implementatiggs closeness to the average and to mpsalsa) yields a satte th
Without the additional measure, the applications woulde@pp average®90% of the Sandia suite’s temporal locali§6% of
more comparable. It should be noted that the increasedabpgts temporal locality,75% of it's data intensiveness. While
locality seen in the Sandia Floating Point applications iomewhat far from “representative”, particularly in terofs
likely because those applications use the MPI programmiggta intensiveness, this subset is more representativeeof t
model, which generally groups data to be operated upon inteeg| applications than the whole.
buffer for transmission over the network (increasing thatish ~ Several interesting Sandia applications are shown on the
locality). graph. The CTH application exhibits the most temporal lo-
The Sandia integer suite is significantly farther from theality, but relatively low spatial locality, and a relatiye
SPEC integer suite in all dimensions. It exhibits clos@d& small data set size. The LAMMPS (Imp) molecular dynamics
less temporal locality, nearl§0% less spatial locality, and hascode is known to be compute intensive, but it exhibits a
a unique data set ovér9 times the size of the SPEC integetelatively small memory footprint, and shows good memory
suite. performance. The temporal and spatial locality measures ar
The LINPACK benchmark shows the highest spatial arglite low. SPPM exhibits very high spatial locality, verymo
temporal locality of any benchmark, and by far the smallegémporal locality, and a moderate data set size.
data intensiveness (the dot is hardly visible on the gralph). Figure 4(b) depicts the Sandia and SPEC Integer bench-
is over 3,000 times smaller than any of the real world Sandigark suites. These applications are strikingly more daffer
applications. It exhibitd 7% less temporal locality and roughlythan the floating point suite. All of the applications exhibi
the same spatial locality than the Sandia FP suite. The andlatively low spatial locality, although the majority of&dia
Integer suite has half the temporal locality and less tha® oapplications exhibit significantly less spatial localiban their
third the spatial locality. SPEC counterparts. The DFS code in the Sandia suite is the
The STREAM benchmark showed over 100 times less temmost “RandomAccess-like”, with 255.vortex in the SPECesuit
poral locality than RandomAccess, and 2.4 times the spatiaing the closest counter part in terms of spatial and teatpor
locality. However, critically, the data intensiveness $tneams locality. 255.vortex’s temporal and spatial locality aréhin
is 1/95th that of RandomAccess. The Sandia Integer Suite35% and 15% of DFS’ respectively. However, once again,
only 1% less spatially local than STREAM, indicating thatDFS’s data set size is ovép times that of 255.vortex’s.
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Fig. 4. (a) Integer and (b) Floating Point Applications Temg vs. Spatial Locality and Data Intensiveness.

300.twolf actually comes closest in terms of spatial antie RandomAccess benchmark). Because of their importance
temporal locality to representing the “average” Sandiaget and their demands on the memory system, they represent a
application, however, the average Sandia code has né&bly core group of applications that require significant attamti

times the data set size. Finally, beyond a specific study of one application domain,
this work presents an architecture-independent methggolo
VII. CONCLUSIONS for quantifying the difference in memory properties betwee

This work has measured the temporal and spatial locali§)y two applications (or suites of applications). This ytaen
and the relative data intensiveness of a set of real wotk§ repeated for other problem domains of interest (the dpskt
Sandia applications, and compared them to the SPEC Inteféfitimedia, business, etc.).
and Floating Point suites, as well as the RandomAccess
memory benchmark. While the SPEC floating point suite ACKNOWLEDGMENTS

exhibits greater temporal locality and less spatial lagali ) _ ]
than the Sandia floating point suite, it averages signifigant 1€ authors would like to thank Arun Rodrigues and Keith

less data intensiveness. This is crucial because the numyBAerwood at Sandia National Laboratories for their valeab
of unique items consumed by the application can affect th@mments. _ o
performance of hierarchical memory systems more than thel he application analysis and data gathering discussed here
average efficiency with which those items are stored in tied tools that were funded in part by DARPA through Cray,
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