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Abstract
Supercomputer architects strive to maximize the performance of
scientific applications. Unfortunately, the large, unwieldy nature
of most scientific applications has lead to the creation of artificial
benchmarks, such as SPEC-FP, for architecture research. Given the
impact that these benchmarks have on architecture research, this
paper seeks an understanding of how they relate to real-world ap-
plications within the Department of Energy. Since the memory sys-
tem has been found to be a particularly key issue for many applica-
tions, the focus of the paper is on the relationship between how the
SPEC-FP benchmarks and DOE applications use the memory sys-
tem. The results indicate that while the SPEC-FP suite is a well bal-
anced suite, supercomputing applications typically demand more
from the memory system and must perform more “other work” (in
the form of integer computations) along with the floating point op-
erations. The SPEC-FP suite generally demonstrates slightly more
temporal locality leading to somewhat lower bandwidth demands.
The most striking result is the cumulative difference between the
benchmarks and the applications in terms of the requirements to
sustain the floating-point operation rate: the DOE applications re-
quire significantly more data from main memory (not cache) per
FLOP and dramatically more integer instructions per FLOP.
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1 Introduction and Motivation
There has been an explosion of interest in supercomputer architec-
ture in the last few years in the wake of the Earth Simulator and
the DARPA HPCS program. Most efforts are focusing on deliver-
ing sustained floating-point performance to scientific applications.
Unfortunately, those scientific applications are known to be large,
difficult to compile, difficult to run, and challenging to obtain rep-
resentative datasets. Thus, all but the large industry players focus
almost exclusively on benchmarks such as the SPEC Floating Point
suite (SPEC-FP). This paper presents results from some real appli-
cations within the Department of Energy in use at Sandia National
Labs. To our knowledge, this is the first study to discuss the archi-
tectural requirements of the given Sandia applications. We ask two
simple questions: what are some of the fundamental requirements
for making these applications run fast, and how do those relate to
the SPEC-FP benchmark suite? The metrics for comparison used
in this work are memory system demand and instruction mix.

It is well known that the memory wall presents significant chal-
lenges to computer architects in upcoming processor generations
[19]. However, the problems associated with the von Neumann bot-
tleneck are even more salient to scientific computing applications.
While benchmarks, such as Stream Suite [18], or Giga-Updates
Per Second (GUPS) measure memory performance directly, the
memory requirements of data intensive and high performance sci-
entific computing applications are less well understood. Further-
more, SPEC, the dominant benchmark for university and industry
research, places a stronger emphasis on raw CPU performance than
on the memory hierarchy[20]. When memory performance is stud-
ied, the focus tends to be on the performance of a given set of ap-
plications running on a particular memory hierarchy. Rather than
performing yet another cache study, this work attempts to quantify
the memory system requirements of an application by measuring
the temporal working set, which is defined as the amount of data
actively being used by the program during a particular phase of
computation.

While the core work of both the SPEC-FP and Sandia suites is
floating-point, they differ dramatically in their actual instruction
mix. A common mistake in microprocessor research is to place a
higher emphasis on providing peak floating-point capabilities than
on balancing the microarchitecture to provide sustainable floating-
point performance. One place that this becomes evident is in the rel-
ative number of “other” instructions to floating-point instructions,
as has been highlighted in previous work[29] for multimedia bench-
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marks. A coarse grained measure of integer versus floating-point
operations shows that scientific applications perform significantly
more integer operations per floating-point operation than SPEC-FP.
Combining this with other measures, such as miss rate and data re-
quired from memory, yields insights into the significant differences
in the number of bytes required from memory per FLOP that can
be delivered. The result is a dramatically different overall balance
point for scientific applications that needs to be the focus for super-
computer architects.

The remainder of this paper is organized as follows: Section 2 dis-
cusses the related work; Section 3 outlines the methodology for
profiling the working set; Section 4 describes the benchmarks; Sec-
tion 5 presents the results; and Sections 6 and 7: conclusions and
future work.

2 Related Work
The focus of research into working set characterization mirrors
changes in computer architecture research. Research on working
sets in the 60s, 70s, and 80s, such as [8], were motivated by the
need to develop efficient algorithms to swap virtual memory pages
from main memory to a backing store. These works defined the
“working set size” as the number of virtual memory pages touched
over a given interval of instructions.

As efficient algorithms propagated and main memory got larger,
the emphasis of later working set work changed, motivated now by
the growing difference between main memory and processor per-
formance (the von Neumann bottleneck). Later work, such as [10]
or [7], used working set analysis to illuminate memory hierarchy
design or compiler optimizations [11, 12]. As a result, the defini-
tion of working set changed. [26] showed that applications tend to
have a hierarchy of working set sizes, and defined them as sizes of
memory which could contain a significant portion of the programs’
data. These working set sizes could be determined by the knees
in graph of an applications cache miss rate against different caches
sizes.

Just as the focus of working set work changed to fit the focus of
architecture research, the methodologies used to explore working
sets changed. Earlier papers [28, 9, 8] developed analytical models
estimate working set evolution. These models were used to predict
page reuse and inform virtual memory paging systems. Measure-
ments and validation were performed with performance counters or
small traces [25].

Later papers relied more upon trace analysis [17], full system sim-
ulation, or hardware performance counters [14]. Analytical models
were sometimes developed to avoid slower simulation [13]. Char-
acterization was generally done in terms of cache performance,
generally looking at cache sizes up to a megabyte[26].

The SPEC suites have seen extensive working set characterization.
[10] found SPEC92 benchmarks to have less than 5% cache miss
rate with less than 40KB data cache. [12] used hardware counters
to compare SPEC CPU2000 performance between different com-
pilers. SPEC has also been used as a baseline when comparing
against other workloads. [15, 17] used SPEC to compare various
commercial, scientific, and desktop applications.

Database and OLTP processing have also been the subject of
many characterization studies [14, 16, 7, 5]. Several other bench-
marks have also been the target characterization. [30] analyzed the

SPLASH2 benchmark, finding that the first important working set
is usually less than 16KB. [4] looked at the OMP2001 benchmarks
under different scaling conditions.

3 Methodology
This work primarily seeks to understand the evolution of the given
benchmark’s working set. To do so, two measurements were cho-
sen: First, the miss rate of the working set, modeled as a true least
recently used (LRU) cache of varying sizes over a large stream of
instructions (in this case, four billion). Each block in the working
set is a single word. This measurement provides an understand-
ing of both the temporal locality required by the instruction stream,
and the compulsory miss rate for the sampled stream. And second,
the number of bytes required of the memory system for each float-
ing point operation performed by the program for a given temporal
working set size in the miss rate experiment. In addition to the
working set information, this work provides more typical profiling
information in the form of an instruction mix.

3.1 Tracing
Traces were gathered using the Amber instruction trace generator
for the PowerPC, which is part of the CHUD toolkit [3]. Amber
executes the native PowerPC binary, forcing the processor to emit
information about each instruction executed. Programs were sam-
pled for 4 billion instructions from the application’s core compu-
tation. In the case of Sandia applications, this required profiling
and source code analysis. Extensive work exists on analyzing the
performance of SPEC. General guidance for choosing the begin-
ning of the SPEC instruction traces was gathered from the publicly
available SimPoint [27] information for Alpha binaries, hand ex-
amination of those binaries and extrapolation to the PowerPC ver-
sions, and hardware performance counter profiling on the PowerPC.
In each case, hardware performance counters were used to verify
the native machine performance of the chosen instruction stream,
and the relevance of the sampled trace. While 4 billion instruc-
tions clearly does not encompass the entire application, there are
two critical benefits to normalizing the samples to a fixed instruc-
tion stream: first, program startup, I/O, and other peripheral opera-
tions are eliminated from consideration; and second, by forcing the
working set to be measured from a “cold start” the compulsory miss
rates for the stream can be measured and compared.

The traces provide the instruction word for instruction executed
during the trace period, annotated with appropriate information.
Branches are annotated with the program counter of the next in-
struction to be executed, and memory operations with the effec-
tive address of that operation. Each trace is stored statically for
later analysis, ensuring that separate programs profiling the data are
given the same instruction stream. (Dynamic tracing is also possi-
ble, however some benchmarks use random numbers to perform
differing analysis on the same set of inputs.)

3.2 Modeling and Analysis
Conceptually, the working set miss rate data is generated by con-
structing a 128 MB, fully associative, true LRU cache with a block
size of 4 bytes (the native word size on the 32-bit PowerPC traces
being analyzed). The working set is modeled in software as a 32M
entry doubly linked list. During each load or store operation, the
list is searched for the requested word address. If a hit is found, the
position in the list is used as the block number, and a hit counter for
that block is incremented. (The head of the list is position 1, and the
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tail is position 32M.) That entry in the list is then promoted to po-
sition one in the list, as it was the most recently used item. The hit
counters for each block are used to provide miss rate information
for working sets varying in size from 1 block to 32M blocks.

For performance purposes, the list is divided into multiple sections,
and a balanced red-black tree is used to locate which section a given
address is in quickly. That section is then searched linearly for the
address so that the position within the list can be found. The list
in this experiment consisted of 16K sections, each of 2K entries.
Promotion to the head of the list can be accomplished in constant
time, and searching in log time for the section number, and linear
time within the section. Given the size of the list, this performance
enhancement is required to allow for a reasonable run time.

The instruction frequency information is gathered by examining
each instruction word in the stream and classifying it according to
its encoding.

3.3 Miss Rate Interpretation
Because the temporal working set’s miss rate does not directly
translate into the intuitive understanding of a cache miss rate, it
is critical to understand the meaning of various points on the curve.
These points are analogous to the same points on a standard cache
curve, except that the working set curve strictly represents temporal
locality. As such, it is better thought of as the minimum bandwidth
multiplier required by the program for a working set of a given size.

k

Rate

Plateau

Final Plateau

Working Set Size

{d
}

Miss

Figure 1. Miss Rate Interpretation

Figure 1 represents an annotated working set miss rate curve. The
miss rate, as expected, is simply the percent of accesses that are not
held in a working set of a given size. When the miss rate plateaus,
additional growth in the size of the working set has no effect on the
number of useful items captured. The final plateau represents the
compulsory miss rate, or the probability that a given memory access
over the interval will read truly new data. The difference between
the miss rate at the final plateau and the miss rate at a given point
(d in Figure 1) represents the probability that a particular access is
examining “old” data not contained in the working set (e.g., that a
smaller working set will have evicted due to size constraints). Sim-
ilarly, k on the figure represents the increase in working set size re-
quired to overcome a plateau (that is essentially wasted until greater
than k blocks are added).

3.4 Mean Performance Computation
In Section 5, each of the measures gathered experimentally include
a “mean result” for the benchmark suite. In each case, the mean
is computed by the same method. Since some programs in each
suite contain multiple input sets, computing a straight mean for each
run tends to overemphasize those benchmarks. Consequently, each
mean is computed as the weighted sum for each program in the
suite (rather than each run). In the case of SPEC-FP, there are 14
programs and 15 runs (ART has two input sets), consequently each
ART input set only contributes 1

28 to the mean. Similarly, the San-
dia suite contains 3 programs and six runs, so each of 3 CTH runs
contribute 19 th to the mean, and each of two LMP runs contributes
1
6 th to the mean.

4 Benchmarks
This study aims to compare scientific applications that typically
consume supercomputer cycles to standard benchmarks used for
microprocessor research. SPEC-FP is chosen to represent the most
commonly studied computer architecture benchmark[6] of floating
point performance. SPEC-FP is compared to a collection of impor-
tant scientific applications at Sandia National Laboratories that are
known to consume a significant portion of the compute cycles.

4.1 SPEC
The SPEC CPU2000 suite[2] is by far the most (currently) studied
benchmark suite for processor performance[6]. This study focused
on the SPEC-FP suite, as summarized in Table 1, because it is sup-
posed to be most representative of scientific applications.

4.2 Scientific Applications
Scientific applications tend to be significantly different from com-
mon processor benchmarks. As such, the qualitative discrepancy
between typical benchmarks and scientific applications has led to
the specification of target applications as part of supercomputer pro-
curements. Examples include the ASCI Purple Benchmark Suite[1]
and the “7⇥” list for ASCI Red Storm1. This section briefly de-
scribes applications that were selected from common production
applications at Sandia National Labs and we expect this set to grow
as part of our ongoing efforts to understand real application behav-
ior. Many of these applications have been previously studied for
other properties[24].

4.2.1 LAMMPS

LAMMPS is a classical molecular dynamics (MD) code designed
to simulate systems at the atomic or molecular level[22, 21, 23].
Typical applications include simulations of proteins in solution,
liquid-crystals, polymers, zeolites, or simple Lenard-Jones systems.
It runs on any parallel platform that supports the MPI message-
passing library or on single-processor workstations. The original
version was written in Fortran90 and consists of approximately
30,000 lines of code2. The version under examination in this work
is an enhanced version of the original written primarily in C++. In a
typical simulation, some combination of the features of LAMMPS

1This is a list of 10 applications that are expected to run 7 times
faster on ASCI Red Storm than on ASCI Red.

2This text adapted with permission from
http://www.cs.sandia.gov/ sjplimp/lammps.html.
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Benchmark Programming Language Description
168.wupwise Fortran 77 Physics - Quantum Chromodynamics
171.swim Fortran 77 Shallow Water modeling
172.mgrid Fortran 77 Multi-grid Solver
173.applu Fortran 77 Parabolic PDEs
177.mesa C 3d Graphics
178.galgel Fortran 90 Computational Fluid Dynamics
179.art C Adaptive Resonance Theory Neural Net
183.equake C Seismic Wave Propagation
187.facerec Fortran 90 Face Recognition
188.ammp C Computational Chemistry
189.lucas Fortran 90 Primary Number Testing
191.fma3d Fortran 90 Finite Element Crash Simulation
200.sixtrack Fortran 77 High Energy Physics Accelerator Design
301.apsi Fortran 77 Meteorology: Pollutant Distribution

Table 1. SPEC CPU2000 Floating Point Suite

is used. Thus, three different input problems that demonstrated dif-
ferent characteristics were chosen for analysis. These were:

1. Lennard Jones Mixture: This input simulated a 2048 atom
system consisting of three different types

2. Chain: simulates 32000 atoms and 31680 bonds.

4.2.2 CTH

CTH is a multi-material, large deformation, strong shock wave,
solid mechanics code developed at Sandia National Laborato-
ries. CTH has models for multi-phase, elastic viscoplastic, porous
and explosive materials. Three-dimensional rectangular meshes;
two-dimensional rectangular, and cylindrical meshes; and one-
dimensional rectilinear, cylindrical, and spherical meshes are avail-
able. It uses second-order accurate numerical methods to reduce
dispersion and dissipation and produce accurate, efficient results.
CTH is used extensively within the Department of Energy labo-
ratory complexes for studying armor/anti-armor interactions, war-
head design, high explosive initiation physics and weapons safety
issues. It consists of approximately 500,000 lines of Fortran and C.

CTH has two fundamental modes of operation: with or with-
out adaptive mesh refinement (AMR). Adaptive mesh refinement
changes the application properties significantly and is useful for
only certain types of input problems. Therefore, we have chosen
one AMR problem and two non-AMR problem for analysis.

Three input sets were examined:

1. 2-Gas: The input set uses an 80⇥ 80⇥ 80 mesh to simulate
two gases intersecting on a 45 degree plane.

2. Explosively Formed Projectile (EFP): The simulation repre-
sents a simple Explosively Formed Projectile (EFP) that was
designed by SNL staff. The original design was a combined
experimental and modeling activity where design changes
were evaluated computationally before hardware was fabri-
cated for testing. The design features a concave copper liner
that is formed into an effective fragment by the focusing of
shock waves from the detonation of the high explosive. The
measured fragment size, shape, and velocity is accurately
(within 5%) modeled by CTH.

3. CuSt AMR (AMR): This input problem simulates a 4.52
km/s impact of a 4 mm copper ball on a steel plate at a 90
degree angle. Adaptive mesh refinement is used in this prob-

lem.

4.2.3 sPPM

The sPPM benchmark is part of the ASCI Purple benchmark
suite[1] as well as the 7⇥ application list for ASCI Red Storm. It
solves a 3D gas dynamics problem on a uniform Cartesian mesh us-
ing a simplified version of the PPM (Piecewise Parabolic Method)
code. The hydrodynamics algorithm requires three separate sweeps
through the mesh per timestep. Each sweep requires approximately
680 FLOPs to update the state variables for each cell. The sPPM
code contains over 4000 lines of mixed Fortran 77 and C routines.
The problem solved by the sPPM involves a simple, but strong
(about Mach 5) shock propagating through a gas with a density
discontinuity. sPPM is the only Department of Energy application
under study used as part of a defined benchmark suite.

5 Results
This section describes the results of four key measures of applica-
tion performance: the instruction mix, the temporal working set’s
miss rate, the bandwidth required from the memory system for that
miss rate, and the number of bytes/flop demanded by each applica-
tion. Together, these properties define a significant portion of the
balance that an architecture requires to deliver sustained floating-
point performance.

5.1 Instruction Mix
Figures 2(a) and (b) show the instruction mixes for the benchmarks
and applications studied, with the means shown in Figures 2(c).
These results clearly indicate that the SPEC-FP applications per-
form significantly more floating point operations than the Sandia
applications; however, the overall ratio between computation and
memory operations is approximately the same. Given that, at their
core, both suites are performing floating point work, it is clear that
the Sandia codes are more complex. They require more integer
work (e.g., address calculations, logical operations, etc.) to perform
the core floating point operation. The only Sandia application that
performs large amounts of floating point work (typical of the SPEC-
FP suite) is the most synthetic (sPPM) in that it comes from the
ASCI Purple Suite and is packaged as a benchmark rather than a full
application. The three CTH runs and the two LAMMPS runs per-
form approximately 10% floating point. The SPEC-FP suite shows
both a significantly higher ratio of floating point operations on av-
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(a) Sandia Instruction Mix (b) SPEC-FP Instruction Mix
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Figure 2. Instruction Mix Information (a-c) and Integer/Flop Ratios (d-e)

erage, and in the individual benchmarks (only the two ART runs
perform less than 10% floating point operations). In fact, Figures
2(d) and (e) show that the Sandia applications perform, on average,
more than 3.5 times the number of integer operations per flop that
SPEC-FP does.

Two other interesting observations can be made from Figure 2.
While the benchmark suites perform a similar number of memory
operations, the SPEC suite, on average, performs more stores. As
a first order approximation, this demonstrates that the Sandia codes
consume more memory for each result generated. Also, the vari-
ance among the SPEC-FP codes is significantly greater. Partially
this is a reflection of the quality of the SPEC suite in choosing
a broad range of applications. However, it also shows that radi-
cally different supercomputing applications share remarkably simi-
lar properties.

5.2 Miss Rate
Figure 3 shows the individual and summary miss rates for the tem-
poral working set when modeled as described in Section 3. The
results demonstrate that while a small working set is slightly more
beneficial for the Sandia applications, as the data is fully captured
the Sandia applications benefit significantly less. In general, this
shows that the Sandia applications operate on a significantly larger
working set (as more “new data” is required over the given instruc-
tion interval). The Sandia codes have both a larger intrinsic working
set (e.g., they operate on more data), and a larger stride (e.g., they
tend to use data from farther back in time).

The miss rate in these results should be looked at more as a band-
width multiplier than as a “cache miss rate”. The working set, as
modeled, ignores all spatial locality effects. Consequently, it truly
represents the minimum number of words required by the program
(for a given size). The overarching question is: given a working set
size, how many bytes of old data are required, and how many bytes
of unseen data are required? The miss rate represents both of these
ratios.

5.3 Bandwidth
Figure 4 shows the raw bandwidth requirements for both suites
(note that the y-axis is in gigabytes). While the SPEC-FP applica-
tions show, on average, a greater absolute bandwidth requirement
from the memory system in the region significantly smaller than
the L1 cache on most processors, the Sandia applications require,
on average, a greater bandwidth utilization in the larger working set
region. Furthermore, the Sandia curves show significantly less im-
provement as the available working size increases. The individual
Sandia curves are relatively flat, while virtually all of the SPEC-
FP curves show large drops (typically before reaching an L1 cache
size). In fact, nearly a third of the SPEC-FP suite requires more
bandwidth than the Sandia applications in the very-small working
set region; however, once the temporal locality is captured, the San-
dia applications require more bandwidth from the memory system.
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(a) SPEC-FPMiss Rate (1) (b) SPEC-FP Miss Rate (2)
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Figure 3. Miss Rates

(a) SPEC-FP Bandwidth (1) (b) SPEC-FP Bandwidth (2)

100 101 102 103 104 105 106 107 108
0

2

4

6

8

10

12

14

16

18
x 109 SPEC Floating Point Applications: Bandwidth vs. Cache Size (1)

Cache Size (32−bit words)

Ba
nd

wi
dt

h

wupwise
swim
mgrid
applu
mesa
galgel
fma3d

100 101 102 103 104 105 106 107 108
0

2

4

6

8

10

12

14

16

18
x 109 SPEC Floating Point  Applications: Bandwidth vs. Cache Size (2)

Cache Size (32−bit words)

Ba
nd

wi
dt

h

art−1
art−2
equake
facerec
ammp
lucas
sixtrack
apsi

(c) Sandia Bandwidth (d) Mean Bandwidth

100 101 102 103 104 105 106 107 108
0

2

4

6

8

10

12

14

16

18
x 109 Sandia Applications: Bandwidth vs. Cache Size

Cache Size (32−bit words)

Ba
nd

wi
dt

h

CTH 2−Gas
CTH AMR
CTH EFP
LMP Chain
LMP LJ
SPPM

100 101 102 103 104 105 106 107 108
0

2

4

6

8

10

12

14

16

18
x 109 Benchmark Suites: Bandwidth vs. Cache Size

Cache Size (32−bit words)

Ba
nd

wi
dt

h

Sandia Mean
SPEC Floating Point Mean

Figure 4. Raw Bandwidth
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(a) SPEC-FP Bytes/Flop (1) (b) SPEC-FP Bytes/Flop (2)
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(c) Sandia Bytes/Flop (d) Mean Bytes/Flop
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Figure 5. Bytes Per Flop

5.4 The Bytes per FLOP Balance
Since sustained FLOPs is the ultimate goal of scientific computing,
the final metric considers the number of bytes needed from memory
for each floating-point operation performed. The bytes per FLOP
balance factor combines the effects from both the raw bandwidth
(Figure 4) and the instruction mix data shown in Figure 2. The bytes
per FLOP summary metric is shown in Figure 5. It shows that the
Sandia applications demand significantly more from the memory
system on a per flop basis (between 30% and 74% more, in fact).
The SPEC-FP suite shows a much more smooth curve in the region
representing a typical L1 cache size (32 KB or less). In terms of
the individual results, the ART runs from the SPEC-FP suite have
the greatest bytes per flop requirement of any application, but repre-
sent outliers in the SPEC-FP suite. The ART runs begin with over
twice the bandwidth requirement of any other SPEC application,
and show data capture in the region of a standard L1 cache. (This
is to be expected as the SPEC benchmarks are generally designed
for cache capture.) sPPM gives the minimum byte per flop ratio of
any Sandia application for very large working set sizes (with a min-
imum of 2.87 bytes/flop). Ten of the SPEC applications (two thirds
of the suite) bottom out below the lowest Sandia application. On
the high end, only the two ART input sets in the SPEC-FP suite de-
mands more than 20 bytes/flop of data for a cache size of one word,
whereas only the LMP-LJ and sPPM input sets in the Sandia suite
demand less. The curves for the averages have a striking difference
from both the miss rate and bandwidth curves: the Sandia average
is consistenly higher than the SPEC-FP average over the full range
of cache sizes.

The bytes/flop ratio represents the critical figure in understanding
the relationship between floating point performance and memory

performance. Given the importance of the von Neumann bottle-
neck, a balanced floating point and memory configuration are sig-
nificantly more important than raw floating point performance in
evaluating potential supercomputing architectures. Furthermore,
SPEC-FP does not provide an optimal measure of the demands
placed on the system by supercomputing applications. While it
clearly achieves its goal of measuring raw floating point perfor-
mance, it is off balance in measuring effective supercomputing ap-
plication performance. While the raw bandwidth numbers look
somewhat similar, it is the balance that is key in evaluation.

6 Conclusions
In conclusion, this work has compared a set of real-world super-
computing applications to the SPEC-FP suite in terms of their in-
trinsic memory requirements (the temporal working set) and their
floating point performance. From the results, it is clear that the San-
dia suite of applications behaves very differently from the SPEC-FP
benchmarks, which are designed to account for only raw floating
point performance. Given that, on average, a Sandia program will
perform 3.5 times the number of integer operations as a SPEC-FP
program, it is clear that measures of raw floating point performance
are not sufficient to characterize the architectures designed for those
applications.

Minimum memory bandwidth requirements are examined in terms
of the application’s temporal working set, which removes spatial
locality effects from classical cache models and focuses on the
amount of reuse of recently touched data, and on the amount of
truly new data required. The results demonstrate that the Sandia
codes hit a higher miss rate plateau later, which indicates that they
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have both larger working sets and less reuse per data item. This
provides insight to the intrinsic properties of Sandia applications
for supercomputer memory hierarchy designers.

Finally, when the bandwidth is considered in the context of the in-
struction mix, it becomes clear that the Sandia codes require, on
average, between 30% and 74% more bandwidth per flop than their
SPEC-FP counterparts. As intrinsic program characteristics rather
than performance observations on a given architecture, these mea-
sures should impact both supercomputer architects and supercom-
puter benchmark suite designers. Furthremore, they provide a cal-
ibration point between reported SPEC-FP results and the require-
ments of the supercomputing community.

7 Future Work
The continuation of this work will naturally examine the orthogonal
intrinsic measure of memory performance, specifically the effec-
tiveness of spatial locality in supercomputing and SPEC-FP codes.
Additionally, the bandwidth requirements of the code segment, and
differences between supercomputing and traditional benchmarks
have yet to be analyzed, though initial analysis has shown that su-
percomputing applications tend to have significantly longer basic
blocks [24].
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