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G R E E N  H P C

Creating the next generation of power-efficient parallel computers requires a rethink of the 
mechanisms and methodology for building parallel applications. Energy constraints have 
pushed us into a regime where parallelism will be ubiquitous rather than limited to highly 
specialized high-end supercomputers. New execution models are required to span all scales, 
from desktop to supercomputer.

Advanced Architectures and 
Execution Models to Support  
Green Computing

O ver the next decade, computer ar-
chitecture will change dramatically 
to adapt to increasingly challenging 
power envelope constraints. Thus far, 

the initial changes have been a reactive transition 
to multicore architectures. However, as supercom-
puters transition from petascale to exascale systems, 
we’ll have to dramatically rethink the underlying 
way in which computation is performed. This re-
evaluation could trickle down to all scales of comput-
ers and facilitate truly high-efficiency, lower-power 
operation. The previous high-end transition (from 
terascale to petascale) didn’t face fundamental lim-
its in the underlying implementation technology 
(the complementary metal-oxide semiconductor, or 
CMOS). Instead, the principal concern related to 
fabrication processes and manufacturability. Today, 
the limits are based on fundamental physics, as ex-
hibited by the dynamic power equation:

P = CV2f

where P is power, C is capacitance, V is voltage, 
and f is frequency. Historically, CMOS scaled by 
decreasing the capacitance per device, while in-
creasing the total number of devices with Moore’s 
law. Successive generations also experienced in-
creases in clock frequency. Despite the exponen-
tial growth derived by increasing capacitance and 
clock frequency, decreasing supply voltages held 
the entire equation in balance.

The current transition to multicore architectures 
is driven by the power equation’s fundamental re-
quirements: supply voltages won’t decrease signifi-
cantly due to switching noise, requiring a flattening 
in the clock frequency. In fact, there’s concern 
about whether it’s even possible to further decrease 
individual device capacitance. Consequently,  
performance gains are realized by increasing the 
number of cores (as the number of devices still 
grows with Moore’s law in every generation), but 
clock frequencies are essentially flat—or in some 
cases declining—while core architecture com-
plexity also remains relatively constant.

Unlike prior generations, the CMOS roadmap’s 
physical limits require fundamental changes in 
the architecture. However, at the high end, sim-
ply moving to multicore computers won’t achieve 
an additional three orders of magnitude of per-
formance within a constrained power budget by 
the decade’s end. As a result, supercomputers must 
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be designed to provide significantly better power 
performance. This contrasts sharply with previous 
decades, when reliance on commodity parts drove 
supercomputer evolution at the cost of power  
and device efficiency.

Today, there’s a real opportunity to redesign 
computers to be highly power efficient. The key 
is to enable highly parallel fine-grained systems 
and let the architecture exploit explicitly defined 
work—rather than “guess” when information isn’t 
yet available, using prediction or speculation to 
advance program execution. This approach con-
trasts with most computer architectures since the 
microprocessor’s invention. As we describe here, 
the ParalleX execution model1,2 can enable the 
transition to more power-efficient computing. 
Not only does it fundamentally expose parallel-
ism, it lets the architecture take advantage of that 
parallelism explicitly, rather than implicitly, and 
reduces critical communication overheads preva-
lent in today’s models of computation.

New Concepts in HPC Architecture
Over the next 10 years, we’ll see dramatic changes  
in how we structure and operate our computer 
systems—from the smallest handhelds, embed-
ded, and mobile computers to the largest super-
computers, which will deliver a thousand times 
the capabilities of today’s most powerful comput-
ing complexes. These changes, which initially 
will be almost imperceptible, will accelerate such 
that within this decade, new systems and their ap-
plications will be based on almost entirely differ-
ent concepts than conventional practices today. 

Such developments will result from the impera-
tive to achieve exaflops sustained performance 
before the year 2020 through innovative technol-
ogy advances. These changes—including a pos-
sible paradigm shift—are further necessitated by 
the severe challenges that are already impeding 
continued progress in sustained performance. 
Future system architectures will embrace new or 
at least untraditional concepts so as to exploit the 
performance opportunities afforded by raw tech-
nology advances, while also providing innovative 
approaches to circumvent constraining factors. 
But, as we now discuss, system architecture must 
change in several key ways if performance gains 
are to meet the goal of practical exaflops capabil-
ity by the decade’s end.

The Multicore World
All projections support the contention that 
Moore’s law, in its basic sense of increased transis-
tor density on semiconductor dies, will continue 

to quadruple every three years. By 2018, compo-
nents using 11-nanometer feature size should be 
commercially available. Such sustained device 
density improvements will continue to drive per-
formance advances. However, two other common 
methodologies critical to performance gains of 
the past can no longer be relied upon as a means 
to future performance. 

The first is clock rate, which—along with  
device density—has increased continuously by a 
factor of a thousand over the last three decades 
from a few megahertz in the 1970s to a few giga-
hertz in 2000. This has been a key factor con-
tributing to sustained improvements in overall 
performance gain. However, clock-rate increases 
have resulted in increases in per-processor power  
consumption, which have now reached the  
upper limits of practical acceptance, even with 
the mitigating contributions of reduced logic 
voltage levels. Clock rate shouldn’t increase over 

the coming decade as much as it has over the pre-
vious two, which will largely eliminate an impor-
tant contributing factor to performance increase. 
Also, voltage levels will diminish only slightly 
because we’re now reaching the limits of reliable  
circuit switching. Thus, we can expect little  
future power advantage from this other source of 
past improvements.

Design complexity is another methodology 
previously exploited for performance gain that’s 
unlikely to significantly contribute in the future. 
In the past, microprocessor design was primarily 
constrained by the number of available transistors 
and the transistor switching rate. As transistor 
density increased with semiconductor technol-
ogy advances, the complexity of microproces-
sor design could increase as well, instilling such 
processors with important architecture improve-
ments often previously developed for and adopted 
from earlier-generation mainframe computers. 
But with increased design complexity came di-
minishing returns in performance achieved per 
transistor. Eventually, the inflationary period 
of performance advantage through complexity 

Within this decade, new systems and their 

applications will be based on almost entirely 

different concepts than conventional practices 

today.
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reached a point of diminishing returns. Indeed, 
the use of hardware-supported speculative com-
puting was one factor in increasing power con-
sumption. The current era in processor core size 
has largely eliminated processor complexity as the 
second important source of performance gain.

Impact of Energy Limits  
on Computer Architecture
Future performance gains, still exploiting device 
density increases through the end of this decade, 
will be achieved through system and core archi-
tectures. System architectures will represent orga-
nizations of ever-increasing numbers of processor 
cores through multicore (increases in cores per 
die), stacked dies to provide more cores per socket,  
and increased sockets per node and even nodes 
per system. Upwards of a billion cores might be 
integrated as a single system to achieve delivered 
exaflops performance by 2020. To realize this 
performance, we’ll need unprecedented levels of  
application-program parallelism of multibillion-
way concurrency. Core architecture will change—
not to add complexity, but rather to make their 

mutual integration and interoperability in large 
distributed ensembles more efficient.

A second contributing factor to achieving 
required performance (at a continued rate of 
growth) is efficiency. Although some benchmarks 
(such as high-performance Linpack3) and a few 
applications exhibit efficiencies—that is, a frac-
tion of sustained floating point performance with 
respect to peak floating point performance—more 
than half of many large-scale, mission-critical ap-
plications deliver less than 10 percent, with 3 to 
5 percent being common (and some unfortunate 
cases of less than 1 percent). With power concerns 
dominating future system concepts, energy and 
temporal efficiency are essential. Jaguar, today’s 
most powerful system (as measured by the high-
performance Linpack benchmark), can consume 
up to 7 megawatts (MW) of power, more than an 

order of magnitude greater than that of super-
computers a decade ago. The threshold of pain 
according to some experts is in the range of 20 
to 25 MW. But current estimates of 2020 exascale 
systems are 120 MW (+/- 50 percent); this being 
sensitive to many assumptions of form and func-
tion. Exploiting the efficiency gap through new 
methods and structures can bring cost and power 
within practical limitations and ensure future 
availability of multi-exaflops systems into the next 
decade. 

A New Path Forward
To achieve the necessary scalability and ef-
ficiencies required, a break from conventional 
practices in structure, operation, and usage is 
essential. We’ve identified four key efficiency  
factors—represented by the acronym SLOW—
that together contribute to most performance 
degradation in today’s systems; these factors 
must be addressed if we’re to realize practical 
exaflops-scale systems.

• Starvation—insufficient work to keep all pro-
cessing units working; this is either because of 
inadequate work or improper balance of work 
allocation across system resources. Starvation is 
addressed through task parallelism.

•	 Latency—the distance measured in time (often 
cycles) for remote accesses and services, such as 
those to memory or other processors. Latency 
is mitigated by avoidance through locality manage-
ment, including caching and hiding via multi-
threading, and future message-driven computing 
techniques, such as with active messages.

•	 Overhead—the critical path extra work that 
systems must perform to manage parallel re-
sources and the computing that wouldn’t be 
necessary for pure, sequential implementations 
of the same algorithms. Overhead is addressed 
through new hardware mechanisms to support 
global parallel computing and efficient runtime 
software techniques.

• Waiting for contention—delays to compu-
tation further experienced because of task 
blocking resulting from contention for shared 
resources, including memory bank conflicts, 
communication networks, or guarded local con-
trol objects for synchronization (such as sema-
phore synchronization variables).  Contention 
is addressed by augmenting bandwidth to com-
munication channels and concurrent hardware 
function units. (This might be counterintui-
tive as computer designers can typically adjust 
bandwidth easily, and thus don’t enumerate it 

Exploiting the efficiency gap through new 

methods and structures can bring cost and 

power within practical limitations and ensure 

future availability of multi-exaflops systems 

into the next decade.
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explicitly. However, latency is the dominant 
performance parameter.4,5)

To address these four critical performance 
factors, future architectures of both processor 
cores and complete systems might vary signifi-
cantly from both past-generation massively par-
allel processors (MPPs) and commodity clusters 
in structure and semantic mechanisms.

First, it’s likely that processor cores will become 
simpler to reduce the average energy per opera-
tion. Although this might reduce the throughput 
of useful operations slightly, it will greatly im-
prove the power consumption per processor core 
and also require less die real estate to improve 
spatial efficiency. Such cores will become closer 
to those of embedded computing today, although 
they’ll be optimized for a different application 
space.

Second, processor cores will be designed ex-
plicitly to work synergistically with a billion other 
cores throughout the largest systems. This is quite 
different from current processors, which are de-
signed either as standalone or to work with a few 
other processors in a cache-coherent node and 
rely on slow I/O channels and system software to 
increase scalability. 

Third, future processor cores will support 
global address space (GAS) to permit efficient and 
immediate access to remote virtual objects any-
where in the system. While not cache coherent—
which can be costly in time and power—such 
direct access to global system resources, both 
logical and physical, can greatly reduce overhead 
and latency. One such model is partitioned GAS 
(PGAS).6

Fourth, we’ll shift from message-passing meth-
ods using very long packets to message-driven 
methods that will sometimes use relatively short 
packets. Although known for decades, message-
driven communication and coordination hasn’t 
been widely employed, except in some wide-area 
semantics like remote procedure calls (RPC). 
Message-driven computation, such as University 
of California, Berkeley’s active messages,7 lets 
work move to data anywhere in the system rather 
than always requiring data to be gathered and de-
livered to statically located work. Average latency 
can be significantly reduced and energy per remote  
operation can be dramatically decreased. Us-
ing this method might also permit data-directed  
execution methods to dynamically expose the 
parallelism found in the metadata of complex 
global data structures, such as the directed graphs 
of adaptive mesh refinement (AMR) algorithms 

and knowledge-management problems to address 
the starvation challenge.

Fifth, hardware support for efficient syn-
chronization objects—such as the futures8 con-
struct—will greatly reduce overhead costs and 
let us effectively exploit finer-grained parallel-
ism and thus address starvation as well. Dataflow 
synchronization objects are fine-grained enough 
to enable the elimination of global barrier syn-
chronization.9,10 Freeing ourselves from the bulk 
synchronous model (which is the only one that to-
day’s architectures efficiently support) is the only 
path to the parallelism levels required for future-
generation architectures.

Sixth, we’ll replace conventional static meth-
ods of task resource assignment and scheduling, 
as well as static distribution of largely regular 
data structures (such as dense matrix partition-
ing), with dynamic adaptive methods for best 
operation as runtime conditions vary. Thread 
context switching, load balancing, asynchro-
nous communication, and local control objects 
will exploit runtime information. Processor ar-
chitecture features supporting dynamic control 
will address all four sources of performance 
degradation.

Finally, active power management and fault-
tolerance mechanisms will be included within 
the new architectures. Where core logic is used 
only lightly, clock rates will be lowered to further 
reduce power consumption. Fault detection, iso-
lation, and reconfiguration mechanisms will be 
incorporated for fault tolerance. The mean time 
between failures of future systems comprising 
hundreds of millions of cores will be too short to 
support conventional check-pointing and restart 
methods.

Not all of these points are obvious; conven-
tional practices often successfully rely on more 
pervasive static binary space partitioning (BSP)-
like methods. The direct exploitation of runtime 
information is valuable only if operation is unpre-
dictable because of data-value dependencies, as 
in the solution to highly nonlinear equations in 
inner loops. Although execution-time variation 
among different instances of such loops can be 
dramatic, global barrier synchronization always 
proceeds at the slowest loop’s rate. Using light-
weight mechanisms such as futures (our fifth fac-
tor) provides dynamic control of execution flow, 
permitting not only overlap of computation with 
communication but also of multiple computa-
tion phases adapting to natural flow rates of the 
computation itself. These and other features will 
emerge as new design structures and operational 
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mechanisms incorporated in the new core archi-
tectures of future exascale computer systems. 

Why Technology Trends Demand  
Improved Efficiency
Technology evolution, including recent trends in 
CMOS technology, drives computer and system 
architectures to advance and change to better ad-
dress scalability, efficiency, and user productivity. 
The architectural trends we described earlier are 
the result of long-term CMOS trends that have 
led to the creation of supremely unbalanced ar-
chitectures. Unfortunately, these trends show no 
sign of abating, and the lack of balance leads to 
machines that are difficult to scale, particularly at 
the high end. Worse, the applications supported 
by those machines are restricted to those that map 
well onto the hardware, and might not reflect the 
kinds of applications required in the future.

Currently, relatively structured physics applica-
tions are well supported by supercomputers, but 
highly unstructured codes are not. With tech-
nology also pushing toward requiring structured 
memory accesses to save energy, the commu-
nity might simply chose to leave many problems 
unsolved.

The New Memory Wall
Historically, the disparity between CPU and 
memory performance has been expressed by the 
memory wall, which resulted from the trend to-
ward increased relative memory latency in every 
processor generation (basically, processor clock 

rates were increasing much faster than memory 
clock rates).4 Because the power dissipation of 
higher clock rates is no longer tolerable, we might 
expect the memory wall to improve. Unfortu-
nately, poor memory performance can’t entirely 
be accounted for by latency. Little’s law (from 
economics) provides a better intellectual model 
for the memory system, dictating that

Throughput = Concurrency / Latency.

With relative latency no longer increasing with 
Moore’s law, concurrency might be the primary 
influence on memory system performance. Un-
fortunately, the underlying technology simply 
will not keep pace. Today, increased memory con-
currency is achieved by adding additional mem-
ory channels, requiring off-chip communication 
paths. These paths are supported by a series of 
off-chip contacts or pins that support wires be-
tween two packaged chips. With the number of 
cores still projected to increase with Moore’s law, 
maintaining a constant number of memory chan-
nels per core would require the same exponential 
increase, which simply doesn’t exist.

Figure 1 shows the disparity between a Moore’s 
law growth in transistors and the expected 
growth in contacts as projected by the Interna-
tional Technology Roadmap for Semiconductors 
(ITRS) roadmap.11 By 2022, each chip’s off-chip 
communication contact will be required to sup-
port nearly an order of magnitude more transis-
tors than today. Moving to high-speed serialized 
communication channels with a packetized inter-
face will almost certainly improve the situation, 
and more advanced packaging technologies, such 
as 3D integration, could radically change how we 
build computers. However, as things stand to-
day, future technology will provide significantly  
less potential communication on a per-core  
basis. This is the modern expression of the 
memory wall, and continues to plague computer 
architecture. It seems likely that, without fun-
damentally changing how we build computers, a 
tremendous excess of compute capability will exist 
for local operations only. Given this, contention 
will likely replace latency as the most severe com-
ponent of the future memory wall.

From the supercomputing community’s stand-
point, the technology trends supporting the drive 
to exascale are very different from those that 
supported the drive to petascale. The primary 
constraint on achieving the next three orders of 
magnitude in performance is power. Projecting 
today’s systems into exascale performance, even 

Figure 1. Growth in transistors relative to off-chip communication. The 
dots show individual points in time; the line extrapolates the trend.
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adjusting for technology improvements, will re-
sult in supercomputers that exceed 100-MW 
power budgets.12 In a sense, the drive to peta 
was more about potentially accelerating a known 
roadmap’s delivery date, and the drive to exa about 
the feasibility of producing such a system at all. 
Aggravating this are the additional constraint fac-
tors of parallelism and resiliency in the presence 
of faults.

Finally, we’ll likely near the end of the CMOS 
roadmap and require a transition to a new device 
technology somewhere within the lifetime of 
the next decade’s trans-exascale performance re-
gime. Indeed, limits on CMOS devices are now 
dictated more by fundamental physics than past 
predictions of “the end” were by manufacturing 
challenges. Speed of light, Boltzmann’s Constant, 
and atomic granularity all contribute to the limi-
tations of fundamental physics for future device 
technologies.

Future Architecture Research Directions
To address the combined communication (tech-
nology) and power (architecture) problems, re-
search into future architectures has shifted from 
realizing “compute” to more efficiently managing 
communications, including memory access. 

There are three key areas of investment:

• Improved communication channel bandwidth 
and power, with optical communication the 
most likely candidate for a technological solu-
tion. Thus far, the cost of integrating optical 
systems (from a different fabrication process) 
with logic has proven the most challenging im-
pediment to wide-spread adoption.

• Improved packaging to let local structures com-
municate more efficiently and, more impor-
tantly, to allow the creation of heterogeneous 
structures. Efforts to combine heterogeneous 
elements, such as processing-in-memory (PIM),  
typically focus on combining two heteroge-
neous elements—in this case, logic and dynamic  
RAM (DRAM)—when in fact combining mul-
tiple elements will be required in the future. 
Examples include logic, DRAM, and optics. 3D 
integration appears the most promising solu-
tion to this problem.

• Innovation in communication interfaces  
(processor-to-memory and system-level inter-
connect) and topologies to take advantage of the 
technologies developed by solving the first two 
problems. Additionally, by closely matching the 
interconnect’s communication semantics with 
those of the system’s programming models, we 

can make greater energy efficiency gains by re-
ducing communication overheads.

This investment, combined with architectures 
supporting improved efficiency, will better sup-
port a solution.

New Applications
In addition to technological and architecture 
changes, we must also transition the high-
end machine application base from 3D physics  
simulations—which have a clear spatial decom-
position, well-established programming models, 
and relatively intensive flops—to large, com-
binatorial, data analytics problems that tend to 
have no clear decomposition. Such problems also 
require new programming models and are pri-
marily integer applications. Examples of these 
problems include

• large-scale graph problems, including social 
network analysis;

• semantic networks, representing linguistic and 
neural-network data;

• combinatorial analysis of genomic and other 
biological data;

• modeling of biological networks, such as pan-
demic flu outbreaks; and,

• other complex network modeling, such as the 
smart power grid.

These problems start as large-scale analytics 
problems, and can be solved only with large-scale 
systems today. They tend to be more data intensive 
(performing more unique accesses to memory)  
and exhibit less locality (the basis for modern 
cache systems).5,13

In any programming model, the challenges 
posed by such applications require architecture 
enhancements, particularly to the data movement 
system, which dominates any computer’s power. 
Specifically, they need

• increased capability to support numerous small 
messages in flight, 

• access to smaller data items in a unit (words in-
stead of cache lines), and

• enhanced synchronization mechanisms to man-
age increased parallelism.

Given such architectural enhancements, these 
applications hold tremendous promise for provid-
ing sufficient parallelism to keep large-scale paral-
lel systems continuously busy doing useful work, 
which helps the energy budget. In cases where 
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this parallelism doesn’t exist, hardware specula-
tion and other complex, energy-inefficient mecha-
nisms can achieve higher performance. However, 
because these applications are parallel by nature, 
they could lead to more energy-efficient program-
ming models.

Implications for Programming  
Models and System Software
A high-performance computing system is more 
than just computer architecture. To achieve true 
efficiency, scalability, and programmability in the 
exascale era, we’ll need new system software and 
programming models as well as to support the 
innovative computer architectures we described 
earlier.

Historically, when architecture responded 
to technology advances with dramatically new 
forms and function, programming models 
changed to support them. Typically, correspond-
ing paradigm shifts inspired such changes and 
provided the conceptual framework for codesign 
of all system layers (including architecture) and 
their joint operation. Unique computation mod-
els were used in vector processing; single instruc-
tion, multiple data (SIMD); array processing; 
systolic arrays; experimental dataflow systems; 
and conventional MPPs and commodity clusters 
using the communicating sequential processing 
model. We believe that a next-generation sys-
tem capable of delivering exaflops performance 
using novel architectures will be organized, 
coordinated, and programmed by a new execu-
tion model that will open up new opportunities 
for operations. Such operations will address the 
challenges previously described to achieve exa-
flops-sustained performance within practical 
constraints. 

Current Research Directions
Ongoing research is exploring one possible 
computation model to govern development of 
programming models and supporting system 
software. Such a model must 

• expose a far greater abundance of parallelism, 
• intrinsically hide latency effects, 
• dynamically work around bottlenecks caused by 

resource contention, and
• recover from faults. 

This work, from multiple sources, suggests that 
such a model will provide the conceptual frame-
work for future systems, incorporating several key 
logical elements:

• parallel processes that are ephemeral (can be 
created and destroyed) and span multiple (pos-
sibly overlapping) nodes in the global address 
space;

• dynamic multithreading (some potentially 
lightweight) that are also ephemeral and sup-
ported by rapid context switching for low over-
head and latency hiding;

• message-driven computation that moves work 
to remote sites to work on local data;

• lightweight control objects for synchronizing 
the global computation and eliminating global 
barriers;

• dynamic resource management, scheduling, 
and allocation; and

• self-aware operational status to respond to 
faults, security threats, and power usage.

Figure 2 shows one possible model—the  
ParalleX model1,2—that could replace the con-
ventional communicating sequential-processes 
model14 that’s widely employed on scalable dis-
tributed memory systems. The ParalleX experi-
mental framework explores the synthesis of key 
concepts that address exascale computing chal-
lenges. It borrows heavily from selected prior 
art, synthesizing them into a new starting point 
for exploring HPC. ParalleX also addresses the 
scaling challenges experienced by some problem 
classes, including adaptive mesh refinement and 
molecular dynamics.

ParalleX comprises four major classes of con-
structs: parallel processes, first-class threads, lo-
cal control objects (LCOs), and parcels. ParalleX 
processes offer contexts for data, code objects, 
threads, LCOs, and child processes. They’re 
parallel in that, within their context, they can si-
multaneously execute multiple threads and child 
processes. They also differ from MPI15 processes 
in that any one process might employ multiple 
hardware nodes, possibly with many cores in each. 
Such processes might even share one or more such 
nodes. 

Threads are bits of executing operations that 
share intermediate values and local control; 
they’re first class in that they’re named in the 
same address space as common global data, and 
other threads can manipulate them directly if 
necessary. A thread’s internal state control need 
not be sequential, and using single assignment op-
erators assumes a form similar to static dataflow, 
except that global mutable variables are also acces-
sible and easily manipulated. LCOs are small ob-
jects, each residing within a single locality (a kind 
of node) that unifies synchronization’s disparate 
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principles, including such common forms as mu-
texes, semaphores, and barriers, but also more 
atypical but powerful forms such as dataflow 
(templates),9,10 producer–consumer, and futures. 
LCOs even include suspended threads. 

This powerful super-construct is used in a 
unique way to manage asynchrony and allow 
flow control through continuations that migrate 
across the abstract computation and the physical 
distributed machine. Parcels are a form of active 
messages7 that enable message-driven computa-
tion for reasons we described earlier. Together, 
these powerful semantic mechanisms supported 
by compilation, a runtime system, and hardware 
architecture open up a vast array of parallelism 

while mitigating the effects of latency, conten-
tion, and overhead. The result is potentially dra-
matic improvements in efficiency, scalability, and 
energy consumption.

Application and System Software Impact
Developers will create new system software in-
corporating this new execution model’s principles 
to support future new architectures and their 
applications. The most significant change will 
be the emergence of user-level runtime system 
importance. The runtime system will likely take 
over many task management responsibilities from 
the conventional operating system (OS) and will  
offer far greater efficiency. The OS is distinct 

Figure 2. The ParalleX model. ParalleX could replace the conventional communicating sequential processes 
model that’s widely employed on scalable distributed memory systems. (a) Local data access, (b) local 
thread invocation (co-routine), (c) local thread invocation (concurrent threads), (d) local control object 
spawning a thread, (e) remote atomic memory operation through parcels, (f) remote thread invocation 
through parcels, (g) percolation, and (h) thread creation as a result of continuation action.
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from the runtime system in that it’s persistent 
and owns the architecture hardware resources; in 
contrast, the runtime is ephemeral: a new one is 
invoked for each user application and terminates 
when the application is completed. 

The runtime system operates within the appli-
cation context and can support rapid user-thread 
context switching and global application synchro-
nization. It also manipulates the hardware re-
sources allocated to it by the OS—usually much 
faster than the OS itself could. Essentially, because 
of its much narrower domain of responsibility, a 
user runtime system can be far more lightweight 
and efficient than an OS, which must consider all 
the issues related to the entire system and its ap-
plication workload. The runtime system will have 
a close association with the compiler that under-
stands the requirements of the specific application 
they’re both serving. The compiler will optimize 
the runtime system use to minimize runtime 
overheads for the specific application needs, even 
as it exploits runtime knowledge to better manage 
resources and scheduling than would be possible 
with static methods alone. 

Nonetheless, the OS will continue to serve as a 
critical component of the future exascale system. 
Originally, conventional OS implementations ran 
on a single processor. In the future, the OS will 
be responsible for upwards of a billion processors. 
This dramatic distinction will drive the new re-
lationships and OS function definitions. Several 
approaches are now under consideration. Perhaps 
the most radical is one in which the OS is a single 
system comprising a number of coexisting distrib-
uted functionalities. This is quite different from 
the generally accepted practice of each node hav-
ing its own OS and being coordinated by some 
higher-level middleware.

In the alternative revolutionary strategy, every 
major OS distributed function operates autono-
mously, managing a specific class of resources. 
For example, the system of a billion cores will 
have a single memory system comprising poten-
tially hundreds of petabytes. Instead of each node 
OS managing its own block of data, a global mem-
ory supervisor will manage all system memory.  
Similarly—and perhaps most importantly—a 
global address manager will control address trans-
lation throughout the entire system. Yet another 
distributed supervisor will manage hardware 
thread-execution elements that feed off runtime 
task thread queues. Most significantly, the OS 
functionality will differ from today’s Unix-like sys-
tems in that every mechanism must be scalable— 
that is, it must operate in a constant time with 

respect to system scale. Otherwise, the OS will 
become the system bottleneck.

But how will we program such systems? The 
programming model is a logical interface between 
the application algorithm above and the system 
architecture below. It responds to the applica-
tion’s expected semantic needs, gives access to the 
system resources for flexibility, and yet abstracts 
away the myriad details to make the program-
ming task manageable. Future programming 
models must be more effective at both than exist-
ing programming methodologies. It’s quite pos-
sible that domain-specific programming models 
will emerge that are optimized to serve particu-
lar problem classes. But we’ll need more general 
models, perhaps of a “lower” nature, from which 
we can develop such specialized programming 
interfaces. 

There are two key attributes here that aren’t 
properties of today’s APIs. First, the semantics of 
local and remote processing must be the same—
that is, symmetric in both local synchronous and 
global asynchronous domains of operation. Just 
as Newton made humanity realize that the laws 
of physics were the same as they applied to Cam-
bridge or to Jupiter, so too should the rules of 
programming (the model’s semantics) be the same 
whether they apply to the local thread or to some 
far-off system node. Second, threads should be 
event driven; the criteria governing when to in-
voke a thread should be definable. 

Combining these two attributes automates 
message management for message-driven com-
putation and eliminates over-constraining global 
barriers. That is, it lets continuations (global 
control state) migrate throughout the distributed 
system application state, without requiring us-
ers to explicitly direct them, thus allowing a true 
scalable parallel computer and programming 
model.

M any of the new DARPA UHPC 
efforts are working to address the 
issues discussed in this article, in-
cluding the Sandia X-caliber proj-

ect, which we’re actively investigating. Ultimately, 
creating a new model of computation will require 
wide-spread community adoption. If successful, 
a model addressing the challenges discussed here 
will usher in a new era of green computing. 
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