23.3

Quantum-Dot Cellular Automata (QCA) Circuit Partitioning:
Problem Modeling and Solutions

Dominic A. Antonelli 1

Andrew B. Kahng « Peter M. Kogge

tCSE Department
University of Notre Dame
384 Fitzpatrick Hall
Notre Dame, IN 46556
USA

{dantonel,dchen,tdysart,

Danny Z. Chen
Richard C. Murphy 1

shu,kogge,rcm,mniemier}acse.nd.edu

ABSTRACT

This paper presents the Quantum-Dot Cellular Automata
(QCA) physical design problem, in the context of the VLSI
physical design problem. The problem is divided into three
subproblems: partitioning, placement, and routing of QCA
circuits. This paper presents an ILP formulation and heuris-
tic solution to the partitioning problem, and compares the
two sets of results. Additionally, we compare a human-
generated circuit to the ILP and Heuristic solutions. The
results demonstrate that the heuristic is a practical method
of reducing partitioning run time while providing a result
that is close to the optimal for a given circuit.

Categories and Subject Descriptors: B.6.3 Design Aids:
Optimization

General Terms: Design, Algorithms

Keywords: Circuit Partitioning, Computer Aided Design,
Quantum-Dot Cellular Automata (QCA)

1. INTRODUCTION AND MOTIVATION

Moore’s law dictates that the number of devices integrated
on a single die doubles every 18 months. Since 1965 this scal-
ing has governed the manufacturing of integrated circuits.
Studies indicate that as early as 2012, the CMOS transistor
may hit physical scaling limits that inhibit this aggressive
packing of devices. Although recent advances have given
significantly more life to this device model, and some in the
field contend that molecular transistors may be feasible in
the near future, other devices may be better suited to the
computing environment of the future. Understanding the
design automation and computing models associated with a
given set of devices is critical to evaluating their fitness.

One such device type, Quantum-Dot Cellular Automata

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DAC 2004, June 7-11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

363

Timothy J. Dysart 1 Xiaobo S. Hu 1

Michael T. Niemier

+xCSE and ECE Departments
University of California, San Diego
Mailcode 0114
La Jolla, CA 92093-0114
USA

abkaucsd.edu

(QCA) [12, 16, 18], first proposed in the early 1990s [12],
transfers information by the propagation of polarized charge,
rather than the flow of current. This device has the poten-
tial to greatly simplify the construction of circuits because
every component of the circuit is represented by a cell and
only one type of gate (the “majority gate”) is needed (in-
version can be performed in QCA “wires”). Furthermore,
because the cells operate using Coulombic interaction (e.g.,
like charges repel), no current flows between the cells and no
power (or information) is dissipated by the internals of the
cell. Conservative estimates indicate that room temperature
devices could be clocked in the 1-10 terahertz range and be
100 times more dense than a CMOS device at the end of the
CMOS curve (e.g., the smallest non-molecular theoretically
operable CMOS device), and dissipate very little power.

QCA has been realized using metal-dot cells [3, 19, 1, 20,
8] and there is tremendous opportunity in molecular imple-
mentations [14, 11] that allow for room temperature circuit
operations. Current lines of investigation include choosing
candidate molecules [13, 7, 21], clocking on the molecular
scale [10], and circuit self-assembly [4]. Molecular scale cir-
cuit implementations are a near term goal, and one of the
primary foci of this work is to provide a methodology for
producing valid, correctly clocked circuits that can be used
by those performing fabrication work.

Thus far, virtually all intellectual inquiry about emerg-
ing nano-scale systems has focused on the device physics,
with some limited effort given to circuit design. There is
significant emerging work in the area of constructing tradi-
tional computer architectures with QCA, and understanding
which computational models best fit the device physics [18,
15, 16, 17]. However, given that nano-scale devices pose
new and major challenges to circuit designers, particularly
in terms of managing the transfer of state information be-
tween very fine-grain modules of computation (potentially
consisting of a single gate), significant design automation is
required to correctly construct QCA circuits (both in terms
of the properties required for the devices making up the cir-
cuit to function physically, and the timing necessary for them
to correctly implement the desired logic function).

The purpose of this work is to identify some important
issues in QCA physical design automation, provide solu-
tions to the subproblems of QCA layout partitioning and

scheduling, and suggest a general methodology for other sub-
problems found in QCA physical design automation. These
problems are uniquely QCA-driven since QCA circuits are
inherently pipelined at the gate level, and the timing of sig-
nal delivery requires that all the signals for a given gate ar-
rive simultaneously. In particular, each QCA wire inherently
holds state information for a clock cycle because the wire is
constructed from QCA devices, and the state is held in the
position of the charge on two devices which are physically in-
teracting. Due to this and other QCA specific features, QCA
physical design introduces a number of interesting problems
that are different from traditional VLSI physical design [2].

This paper examines the problem of partitioning a QCA
circuit into clocking zones, which are required for the func-
tioning of a QCA cell. As the circuit is partitioned, a sched-
ule is created that strictly enforces the timing requirements
of the circuit — specifically, that each of the signals arrives at
its destination simultaneously. Furthermore, it provides for
the tradeoff between the objective functions of constructing
the minimum latency circuit, while simultaneously placing
restrictions on the amount of wasted area in that circuit.

We propose an ILP formulation and heuristic algorithms
for the QCA circuit partitioning problem. We also compare
the output of the ILP and heuristic solutions using both
actual and randomly generated circuits. The real example,
chosen from the ALU of a complete processor laid out in
QCA [15], gives the additional advantage of allowing com-
parisons to a full-custom layout. Our heuristic algorithms
are based on a network flow model of the problem.

To the best of our knowledge, this is the first attempt to
model and solve the QCA circuit partitioning problem. For
traditional VLSI circuit partition work, see [2, 22]. For QCA
circuit physics and design work, see [12, 16, 18, 17, 15].

Section 2 provides a brief introduction to QCA circuits.
Section 3 describes the formulation of the overall problem
and the impact of QCA device physics upon it. Section 4
examines the specific Partitioning and Scheduling problem,
and presents the ILP and heuristic formulations. The exper-
imental results are presented in Section 5, and conclusions
in Section 6.

2. QCA BASICS

Before addressing layout, it is necessary to review some of
the basic properties of QCA circuits. This discussion begins
with a brief overview of the device physics, then considers
basic logic, and finally introduces clocking to tie everything
together. The layout rules for QCA are relatively simple,
and fortunately, the layout process is flexible.

2.0.1 Basic Quantum Dot Construction

A single device is used for the construction of all com-
ponents of an entire circuit (computational elements and
wires). This QCA device consists of a cell with four quantum
dots located in the corners and two mobile electrons. By pro-
viding tunneling junctions with potential barriers controlled
by local electric fields that are raised to prohibit electron
movement and lowered to allow electron movement, an iso-
lated cell can have one of three states. A null state occurs
when the barriers are lowered and the mobile electrons are
free to localize on any dot. The other two states are po-
larizations that occur when the barrier is raised, and serve
to minimize the energy states of the cell. These two states
are denoted as P = +1 (binary 1) and P = —1 (binary
0). Figure 1 shows basic QCA cells and their two possible
orientations. Cells placed near each other are forced into
matching polarizations due to the Coulombic interactions
between the cells. More details regarding the QCA device

364

physics can be found in [12].

A Single QCA Cell Elen

®
O

90-degree 45-degree
Orientation Orientation

Figure 1: QCA Cells and Their Orientation

‘Quantum Dots BINARY 0

(p=-D

uantum Dots

‘ BINARY 1
Electron (p=+D

2.0.2 QCA-based Logic

The first consideration for logic is how to move data down
a wire. This can be done by placing cells next to each other
in a line and allowing them to interact. From the Coulombic
interactions, if one cell at the end has a fixed polarization,
then each cell in the line (wire) will take on the same value.
However, since these devices are all in a two-dimensional
plane, there is no analogy to “layers of metal” as there are in
VLSI. As such, wire crossings must be constructed. Theoret-
ically, cells can be oriented at either 90 degrees or 45 degrees
(as depicted in Figure 1) in a specific layout to implement
a wire crossing. Since manufacturing nano-scale cells with
two different orientations is likely to be challenging, we seek
to minimize the number of wire-crossings.

Now that signals can be passed along wires, gates need
to be constructed to compute various logic functions. The
basic logic gate in QCA is the majority gate, as can be seen
in Fig. 2. The majority gate implements the logic function
F = AB 4+ BC + AC, where A, B, and C are inputs and
F is the single output. By fixing a single input to 0, an
AND gate can be implemented whereas fixing an input to 1
creates an OR gate. Fortunately, creating a fixed cell can be
done within the manufacturing process and constant signals
do not need to be routed within the circuit. Inversion can be
done within the wire by slightly off-centering the wire, and
can be considered “free.” These gates provide a universal
set of logic gates which allows for the continuation of the
binary computing paradigm.

I I
CLOCKING ZONEO | CLOCKING ZONE 1 | CLOCKING ZONE 2
I I

|

|
:
|

I

|

c |
|

|

|

|

Figure 2: Majority Gates

2.0.3 QCA Clocking

Clocking plays a key role in controlling the QCA logic
functionality. In order to have active computation, signals
pass through clocking zones, which represent areas where
this computation is occurring [17]. These clocking zones are
a direct consequence of the QCA device physics. The clock-
ing zones create the electric field which lowers and raises the
potential barriers that allow the free electrons to tunnel or
not. The clocking zones are physically adjacent, so the com-
putation must proceed from one to the next in sequential
order. As a particular clocking zone is performing a com-
putation, the clocking zone before it must hold its outputs

steady, and the clocking zone after it must perform no com-
putation. This is a somewhat more simplified model than
the 4-phase clock discussed in [15], but is more faithful to
modern QCA clocking notions [5].

It is required that a signal only pass through active clock-
ing zones and that all signals arrive at their required area
of computation simultaneously. One direct method for gen-
erating such clocking zones is to assume a grounded plate
above and parallel to the plane of the circuit. Below the
plane of the circuit is a set of parallel wires, again in a par-
allel plane, but with the wires perpendicular to the signal
flow. All wires carry the same clock signal but with neigh-
boring wires 90-degrees out of phase[5]. (The same phase
thus repeats every 4 wires.)

The timing rules of QCA circuits are strict and must be
obeyed if the circuit is to function properly. For majority
gates, its output cell must be in a clocking zone separate
from that of the other cells in the gate. For example, in
Fig. 2, the output cell of the left majority gate (cell F), is
in clocking zone 1, while its inputs are in clocking zone 0.
Since majority gates line up on the edges of each clocking
zone while routes between the outputs of such gates and the
input that they drive are constructed in the middle, gate-
level pipelining is inherent within a QCA system. Figure 2
shows this clearly. The output from the gate on the left,
which is in clocking zone 0, appears in cell F', and is held in
the wire p. This value is then seen on input B’ of the right
majority gate, and is consumed by gate g2. F, p, B, and C’
are all in clocking zone 1. The result of the computation at
gate g2 is then seen in clocking zone 2. To have a minimum
number of clocking zones, which is the minimal latency of
the circuit, p must be contained in clocking zone 1 only. If p
was in clocking zone 2 as well, this small system would then
require 3 clocking zones, which would not be minimum.

CLOCKING ZONES
0 ! 1

I I

I I

I I I
| | |
I I I
| |
-

I I I
‘

The Graph Representation of: Y = (A+B)C

Figure 3: Example Circuit with Clocking Zones

Figure 3 depicts the circuit Y = (A + B)C. The inputs
(represented by three separate nodes for clarity) appear in
clocking zone 0. The OR must be computed in clocking zone
1 or later, and, as both the result of the OR and the primary
input C' are required before the AND can be computed, a
buffer (indicated by the black dot) must be inserted into
clocking zone 1 for signal C. Finally, the result of clocking
zone 2’s computation is available in clocking zone 3 for the
output signal Y. Although this example is trivial, it depicts
the fundamental timing problem for QCA circuits.

3. PROBLEM FORMULATION

Given a logic network based on QCA gates and repre-
sented as a directed acyclic graph (DAG), we wish to auto-
matically generate a QCA physical layout that realizes the
circuit using a minimum number of clocking zones, while si-
multaneously minimizing wasted area of the overall circuit.
The wasted area is determined by the sum of the height

365

differentials between the tallest clocking zone and all other
clocking zones. Therefore, a uniform clocking zone height
would have no wasted area and is desired. These two crite-
ria form the core requirement in solving the QCA physical
design problem.

Using VLSI design as an analogy, we can envision the
QCA physical design process as consisting of partitioning,
placement, and routing. However, some constraints and/or
requirements in these subproblems are unique for QCA cir-
cuits.

1. Partitioning: This stage divides the DAG into par-
titions (or clocking zones) which fulfill the scheduling
constraint, namely, all signals arrive at their destina-
tion simultaneously. When imagining the circuit laid
out in two dimensions, this can be viewed as choos-
ing the horizontal position for each gate. The number
of cells within a clocking zone may impact the overall
height and thus the area of the circuit. More impor-
tantly, each clocking zone must be of a similar height
so that the clock (which is an electric field created un-
der the clocking zone that controls the dot’s state) can
be easily and uniformly distributed.

2. Placement: This stage places the physical devices
within their assigned clocking zones such that the num-
ber of wire crossings is minimized. In a QCA environ-
ment, wire crossings are expensive because they require
either a large planar circuit to exchange the position
of two signals, or a change in the orientation of indi-
vidual quantum dots (offset by 45-degrees, see Section
2). These are expensive manufacturing requirement.

3. Routing: This stage constructs the optimal “wire”
routing to implement the given circuit with the mini-
mum number of wire crossings.

Just as in VLSI physical design, the three subproblems
are closely related. Each of the tradeoffs (for wire crossing
and routing) must affect and feed-back into the partitioning
to preserve timing constraints. As in solving the VLSI phys-
ical layout problem, this can be dealt with by an iterative
strategy.

In this paper, we focus on the partitioning problem. Our
aim is to provide the best partition of gates into clocking
zones in terms of the overall circuit area. Furthermore, we
strive to develop general methodologies that can be reused
in solving the other two subproblems. In the following, we
introduce the necessary notation that formally defines the
partitioning problem.

Let G = (V,E) be a Directed Acyclic Graph describing
a QCA circuit (e.g., Figure 4). G has a source and ter-
minal vertex. All primary inputs are from the source, and
primary outputs converge at the terminal. The remainder
of the graph consists of vertices, which represent majority
gates, and the edges in E represent data dependencies. If a
vertex v; represents an input, its indegree, d;n (v;), is 0 and
its outdegree, dout(v;), is > 1. If v; represents an output,
its indegree is > 1 and its outdegree is 0. If a vertex v;
represents a majority gate, it has the following properties
(assuming a maximum fan out parameter Fpqz):

1. dm(vz) S 3
2.1 < dout(”i) < Frae

In summary, the requirements of the partitioning problem
are to divide the circuit into legal clocking zones such that:

1. Ensure that all input signals to a gate arrive simulta-
neously;

2. Minimize the number of clocking zones, and thus, the
total latency of the circuit; and

3. Create a uniform clocking zone height (the height of
the clocking zone is determined by the number of gates
and wire routing channels passing through that zone).

(B) MINIMUM LATENCY SCHEDULING (WITH CLOCKZONE HEIGHT RESTRICTION)

Figure 4: Example Schedules

In considering the height of a clocking zone, the cells oc-
cupied by wiring channels cannot be ignored. In the current
QCA technology, a wire channel can take up to 3 cells in
height while a majority gate takes 5. Furthermore, when-
ever a wire crosses a clocking zone (regardless of its length),
it introduces a unit of delay to the signal it carries. We use
a simple example to show how the above constraints impact
the partitioning process.

Figure 4 shows an example of two partitions. Figure 4(A)
minimizes the latency of the circuit while the partition in
Fig. 4(B) moves majority gate A one clocking zone to the
right. As a result, we have traded two routing channels
for a majority gate without impacting the overall latency
of the schedule. In effect, the clocking zone containing B
and C is now “shorter”. Clearly, the QCA features make
the partitioning problems somewhat different from the parti-
tioning and scheduling problems studied in electronic design
automation.

4. ALGORITHMS FOR PARTITIONING

A common mechanism for constructing a valid schedule
given the timing requirements is to insert delay buffers through
retiming [9]. The basic problem of minimizing the number
of delay buffers inserted into the circuit while ensuring that
all signals arrive simultaneously has been solved in polyno-
mial time using a network flow model [6]. If we think of a
wire in a QCA circuit as carrying the same number of de-
lay buffers as the number of clocking zones it crosses, the
partitioning problem is similar to the problem studied in [6].
However, the additional requirement that the difference in
clocking zone heights be minimized while keeping the num-
ber of buffers to a minimum increases the complexity sig-
nificantly. We will first present an ILP formulation of the
problem, and then present a heuristic algorithm to solve the
problem.

366

4.1 ILP Formulation

We use the variable X;; to represent the assignment of
vertex V; in G(V, E) to clocking zone [. Specifically,

1 if v; is assigned to clockingzone [
0 otherwise

Xu=A{
Note that any gate in a QCA circuit has only one output.
However, the output can fan out to many other gates. To
reduce each clocking zone height, we would like to maximize
the sharing among the fanouts of a gate output. This is
equivalent to delaying forking the wire of the output to as
late as possible. If one models delay buffers based on edges,
the fanout sharing can become complicated and lead to many
more variables than necessary. We observe that the best
sharing among fanouts will introduce the same number of
buffers as the number of clocking zones between the gate out-
put and the latest input driven by the fanout. Therefore we
only associate buffers with gates, rather than edges. Specif-
ically, buffers are represented by the variables P;;, which are
defined as follows:

1 if a buffer is inserted on the output node i at clocking zone [
0 otherwise

Py ={
L represents the maximum allowed latency (which must be
greater than or equal to the length of the critical path in
G), and C is the height of the tallest clocking zone , e.g.,
C = maz(M,CM 4+ B,CT),Vl < L, where C; is the number
of majority gate cells in clocking zone [, and B; is the number
of buffers in clocking zone I. C™ represents the height of a
majority gate, and CT represents the height of a buffer.

To ensure a valid schedule, the following inequalities rep-
resenting the precedence constraints must be satisfied:

STXul =Y Xul > 1,¥(i,j) € B (1)
l !

-1
Py > Y (Xij = Xjn) = X V(i.j) € BV (2)
h=1

To ensure a valid solution, X; must satisfy the following:

ZX“:1
l

Our goal of minimizing the difference in clocking zone
heights can be thought of as minimizing the maximum clock-
ing zone height, which can be captured by the following con-
straint:

(3)

C>CMY Xu+C"Y Pu(i),Vi (4)
K3 7

Equation (1) ensures that data dependencies are consid-
ered and separated by at least one clocking zone (recall that
QCA is inherently pipelined at the gate level). The second
constraint, Equation (2), states that a buffer is needed at
clocking zone [for gate v; if v; is scheduled before [and v; is
scheduled at or after [. The right hand side of Equation (4) is
the sum of the number of majority gates and buffers in each
clocking zone. Minimizing the value of C' is the objective
function for this ILP formulation.

4.2 Heuristic Solutions

The above ILP formulation is guaranteed to produce the
optimal solution. However, solving the ILP can be quite
time consuming for a large QCA circuit. In this section we
describe a simple heuristic approach to solving the partition

problem. The beauty of our heuristic approach is that it
is a rather general methodology which can be employed in
solving the other subproblems in QCA physical design au-
tomation.

Our heuristic makes use of the polynomial-time retiming
algorithm presented in [6]. This algorithm solves the mini-
mum buffer insertion problem for a pipelined circuit by rely-
ing on a network flow formulation. Our main idea is to apply
the algorithm in [6] to a DAG that represents a QCA cir-
cuit, “perturb” the resulting solution by introducing extra
constraints which confine some specific vertices to certain
clocking zones, and then apply the algorithm in [6] again.
The above can be repeated a number of times. The key to
this heuristic is in the perturbation. We describe our ap-
proach in more detail below.

In solving the partitioning problem, we are willing to trade
off latency to reduce clocking zone height and make the
circuit more uniform. Our heuristic uses the network flow
model to construct the minimum buffer insertion, and then
examines the resulting graph to find clocking zones which
are impacted. An impacted clocking zone is one which is
“too tall”, the difference between the maximum height and
the average height is larger than a predefined threshold. The
heuristic then adds a constraint to a node v in that clocking
zone, forcing v to be scheduled later or earlier, and re-runs
the network flow based algorithm on the modified graph.
Adding these constraints must be done carefully to keep the
problem polynomial time solvable (the proof is omitted due
to page limit constraints). Given a set of clocking zone and
design constraints (Hpmqe, the maximum permissible clock-
ing zone height, C), the general heuristic works as follows:

1. Run the network flow minimum latency scheduler to
determine if an acceptable solution is found on G. If
so, complete.

2. If the solution is unacceptable (because of too much
variation in clocking zone heights), then modify G. An
example of modifying G is to choose a vertex or subset
of vertices not in the critical path, but in an impacted
clocking zone, and create a precedence constraint re-
quiring it to be before or after the node in the critical
path that shares the same clocking zone in which it is
currently scheduled. G could also be modified in sev-
eral other ways such as by moving an impacted node
to a later clocking zone (if legal),

3. Go to step 1.

By employing several different methods of modifying G, it
is possible to develop a system with a more uniform clocking
zone height. Additionally, by having these different meth-
ods, the heuristic may select a larger set of vertices which
it could use to modify G. A major benefit of this heuris-
tic solution is that it could be used to solve the Placement
and Minimum Wire Crossing and Routing subproblems in-
troduced in Section 3.

S. EXPERIMENTAL RESULTS

To test the ILP formulation and the heuristic, we first used
a segment of a simple ALU, designed to perform addition,
subtraction, AND, and OR operations. This ALU has the
advantage of having been laid out by hand [15] and a single
bit-slice is depicted in Figure 5. Circuits with one, two, and
four bit-slices were tested with the graphs containing 24,
47, and 93 nodes respectively. Table 1 shows the critical
path length (maximum latency) and the maximum clocking
zone heights for both the ILP and heuristic methods. These
solutions are either the same or within one cell in height for

367

each of the three ALU segments. When comparing these
to the maximum height of the full custom layout, which is
33, we see that the ILP and heuristic solutions are a slight
improvement over the full custom layout, which is good.

§

oonopedh
5]

ogomal
of
By

v
g

0000666006606

o

g
o

atolalal

B
e
it

(elel=lelelols vl

elatatsl

aaam&%mua
s
H
g
o

gagmmaa

{¢lslslelsls]

8
oonolass Colbomn:
* BEE SPRREE
g 0.8 8 B-our
o R GLLELT LR meoopog s -
e o @ 3!
adpann aaa0 D:qy - Bl
o B ndla,. o P slelals! ol
[o oitgonog @ of o
& g of g
aoog| of ol
g af 20,0 QDO OB 8 51
HE | ad a lolatsl
& [. lam e
e 8l abidoocdonnaion ol
e dlBgnag a
lafalsl o g
=l ond al
ndnnas N al
o= -8B Z00 annagammu
o oot
) 2onB OB nnn
S . cn
aonoag o dlennificnnapoookonoppanpo s
D%ammummmmm
& 1 aoog
oag noadbooooed =
Copooooog

Figure 5: An ALU Designed by Hand

Table 1: ALU Bit-slice Results

Num. Bit-slices | Crit. Path Len. | Optimal | Heuristic
1 10 31 31
2 10 51 52
4 12 78

A second group of tests was created to directly compare
the ILP and heuristic solutions. The circuits for these tests
were randomly generated and contain a specific number of
gates. For this group of tests, 20 graphs were generated
and tested for 10 gate, 20 gate, and 50 gate circuits. Ta-
ble 2 shows the average, minimum, and maximum values for
the critical path length, ILP maximum height, and heuristic
maximum height. For reference, the average running time of
the optimal ILP solution (for 50 nodes only) is 385 seconds,
with a range of 10 seconds to 45 minutes, and a median of
45 seconds. The large average running time is due to the
three tests that took longer than 5 minutes to complete. All
other tests completed in the order of seconds. We see here
that for these smaller circuits, the average height is within
10% - 15% of the optimal, while the minimum and maximum
heights are the same. The heuristic algorithm required less
than one second for small (less than 100 node) graphs, and
up to 20 seconds for large (2000 node graphs) per iteration.
The solution was found in one to 100 iterations (depending
on the circuit).

Table 2: Small Graph Results.

Num. [Crit. Path Len. Optimal Heuristic
Nodes | Avg,Min,Max | Avg,Min,Max | Avg,Min,Max
10 6.3, 4, 8 18.35, 14, 23 | 18.6, 14, 23
20 8.3, 6, 12 29.7, 25, 38 32.25, 25, 38
50 10.75, 8, 13 60.83, 51, 69 | 70.28, 59, 87

Lastly, we generated groups of circuits with 100, 1000,
and 2000 nodes through the heuristic solver. For graphs
with 100 and 1000 nodes, five tests were conducted, and one
was conducted for a graph with 2000 nodes. The results are

summarized in Table 3 and contain the same information as
the previous two tables. The ILP solutions are not found as
they cannot be computed in a reasonable amount of time.

Table 3: Large Graph Results.

Num. Nodes | Crit. Path Length Heuristic
Avg., Min., Max | Avg., Min., Max
100 15.6, 12, 16 129.8, 118, 143
1000 24.2, 24, 26 1426, 1402, 1463
2000 29 3061

From these results, we see that the optimal and heuristic
solvers are nearly the same for small graphs and that they are
comparable to a full-custom layout. For larger graphs, we
have also shown that the heuristic solver can find solutions
in a reasonable time frame. The results generated here show
that our ILP formulation returns a desired answer and that
the heuristic formulation enables us to find a solution that
is close to the optimal, but is computed considerably faster,
which enables us to partition large circuit designs.

6. CONCLUSIONS

In this paper, we have presented the QCA physical design
problem, and related it to problems seen in VLSI physical
design. To solve this problem, three subproblems were for-
mulated to handle partitioning, placement, and routing of
a QCA circuit. We then developed an ILP formulation and
heuristic solutions to solve the partitioning problem. Com-
paring the results of the ILP and heuristic solutions shows
that the heuristic is a practical method to reduce design
times while providing a result that is close to optimal for
a given circuit. Additionally, we compared these solutions
to an ALU bit-slice that was generated by hand and found
them to be in agreement.

Acknowledgments

This work was supported in part by the University of Notre
Dame, in part by the National Science Foundation under
grant CCR-0210153, and in part by SRC under grant id
2000HJ836. D.Z. Chen’s research is supported in part by
NSF Grant CCR-9988468. X.S. Hu’s research is supported
in part by NSF under grant number CCR02-08992. A.B.
Kahng’s research is supported in part by the MARCO Gi-
gascale Systems Research Center.

7. REFERENCES

[1] A. O. Orlov et al. Expiremental demonstration of
clocked single electron switching in quantum-dot
cellular automata. Appl. Phys. Lett., 77(2):295-297,
July 2000.
C. J. Alpert and A. B. Kahng. Recent directions in
netlist partitioning: A survey. Integration: The VLSI
Journal, 19:1-81, 1995.
I. Amlani et al. Digital logic gate using quantum-dot
cellular automata. Science, 284:289-291, April 1999.
Q. Hang, Y. Wang, M. Lieberman, and G. H.
Bernstein. Molecular patterning through
high-resolution polymethylmethacrylate masks. Appl.
Phys. Lett., 80(22):4220-4222, June 2002.
K. Hennessy and C. S. Lent. Clocking of molecular
quantum-dot cellular automata. Journal of Vacuum
Science and Technology, 19(5):1752-1755,
September/October 2001.
[6] X.S. Hu, S.C. Bass, and R.G. Harber. Minimizing the
number of delay buffers in the synchronization of

368

(10]

(11]

(12]

(13]

(14]

(15]

(18]

(19]

20]

21]

22]

pipelined systems. IEEE Transactions on
Computer-Aided Design of Integrated Clircuilts and
Systems, 13(12):1441-1449, December 1994.

J. Jiao, G.J. Long, F. Grandjean, A.M. Beatty, and
T.P. Fehlner. Building blocks for the molecular
expression of quantum cellular automata. isolation and
characterization of a covalently bonded square array of
two ferrocenium and two ferrocene complexes. J. Am.
Chem. Soc., 125:7522-7523, 2003.

R. K. Kummamuru et al. Operation of a quantum-dot
cellular automata (QCA) shift register and analysis of
errors. IEEE Transactions on Electron Devices,
50(9):1906-1913, September 2003.

C. Leiserson and J. Saxe. Retiming synchronous
circuitry. Algorithmica, 6(1):5-35, 1990.

C. S. Lent and B. Isaksen. Clocked molecular
quantum-dot cellular automata. IEEE Transactions on
Electron Devices, 50(9).

C. S. Lent, B. Isaksen, and M. Lieberman. Molecular
quantum-dot cellular automata. J. Am. Chem. Soc.,
125(4):1056-1063, 2003.

Craig S. Lent, P. Douglas Tougaw, and Wolfgang
Porod. Quantum Cellular Automata. Nanotechnology
4, 49, 1993.

Z. Li and T. P. Fehlner. Molecular QCA cells. 2.
characterization of an unsymmetrical dinuclear
mixed-valence complex bound to a au surface by an
organic linker. Inorganic Chemistry, 42:5715-5721,
2003.

M. Lieberman et al. Quantum-dot cellular automata
at a molecular scale. Ann. N.Y. Acad. Sci.,
960:225-239, 2002.

M. T. Niemier and P. M. Kogge. Logic-in-wire: Using
quantum dots to implement a microprocessor. In
International Conference on FElectronics, Circuits, and
Systems (ICECS ’99), Cyprus, September 1999.
Michael T. Niemier. Designing Digital Systems in
Quantum Cellular Automata. MS CSE Thesis,
University of Notre Dame, April 2000.

Michael T. Niemier and Peter M. Kogge. Problems in
designing with QCAs: Layout = timing. International
Journal of Circuit Theory and Applications, 29:49-62,
April 2001.

Michael T. Niemier and Peter M. Kogge. Exploring
and Exploiting Wire-Level Pipelining in Emerging
Technologies. ISCA, June 2001.

A. O. Orlov et al. Expiremental demonstration of a
binary wire for quantum-dot cellular automata. Appl.
Phys. Lett., 74(19):2875-2877, May 1999.

A. O. Orlov et al. Clocked quantum-dot cellular
automata shift register. Surface Science,
532-535:1193-1198, June 2003.

H. Qi et al. Molecular quantum cellular automata
cells. electric field driven switching of a silicon surface
bound array of vertically oriented two-dot molecular
quantum cellular automata. J. Am. Chem. Soc.,
125:15250-15259, 2003.

N. A. Sherwani. Algorihms for VLSI Design
Automation. Kluwer Academic Publishers, 1995.

