
The Chapel Tasking Layer Over Qthreads

Kyle B. Wheeler, Sandia National Laboratories* and
Richard C. Murphy, Sandia National Laboratories and

Dylan Stark, Sandia National Laboratories and
Bradford L. Chamberlain, Cray Inc.†

ABSTRACT: This paper describes the applicability of the third-party qthread lightweight threading
library for implementing the tasking layer for Chapel applications on conventional multisocket multicore
computing platforms. A collection of Chapel benchmark codes were used to demonstrate the correctness
of the qthread implementation and the performance gain provided by using an optimized threading/tasking
layer. The experience of porting Chapel to use qthreads also provides insights into additional requirements
imposed by a lightweight user-level threading library, some of which have already been integrated into
Chapel, and others that are posed here as open issues for future work. The initial performance results
indicate an immediate performance benefit from using qthreads over the native multithreading support in
Chapel. Both task and data parallel applications benefit from lower overheads in thread management.
Future work on improved synchronization semantics are likely to further increase the efficiency of the
qthreads implementation.

KEYWORDS: Chapel, lightweight, threading, tasks

1. Introduction

It is increasingly recognized that, in order to obtain
power and performance scalability, future hardware
architectures will provide large amounts of paral-
lelism. Taking full advantage of this parallelism re-
quires an ability to specify the parallelism at multi-
ple levels within a program. However, parallel pro-
gramming is also widely recognized to be a diffi-
cult problem, and the set of programmers who can
effectively leverage parallelism is a small fraction
of those who are effective sequential programmers.
Addressing the expressibility and programmability
challenges are problems of wide interest.

Chapel is a new parallel programming lan-
*Sandia is a multiprogram laboratory operated by Sandia Cor-

poration, a Lockheed Martin Company, for the United States De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

†This material is based upon work supported by the Defense
Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0001.

guage being developed by Cray Inc. as part of
DARPA’s High Productivity Computing System
program (HPCS). One of its main motivating
themes includes support for general parallel pro-
gramming—data parallelism, task parallelism, con-
current programming, and arbitrary nestings of these
styles. It also adopts a multiresolution language
design in which higher-level features like arrays
and data parallel loops are implemented in terms
of lower-level features like classes and task paral-
lelism. To this end, having a good implementation
of Chapel’s task parallel concepts is crucial since all
parallelism is built in terms of it.

Task parallelism, in this case, refers not to the
task/data parallelism distinction, but to the idea of a
user-level threading concept, wherein tasks that can
be executed in parallel are relatively short-lived and
are created and destroyed rapidly. To maximize per-
formance, applications must not only find parallel
work, but must also match the amount of parallel
work expressed to the available hardware. This lat-

1

ter task, however, is one best carried out by a run-
time rather than the application itself.

Qthreads is a new lightweight threading, or task-
ing, library being developed by SandiaNational Lab-
oratories. The Qthreads runtime is designed to sup-
port dynamic programming and performance features
not typically seen in either OpenMP orMPI systems.
Parallel work is specified and the Qthreads runtime
maps the work onto available hardware resources.

By comparingQthreads dynamicmapping of tasks
to hardware against the default “FIFO” scheduling
mechanism of the Chapel runtime, an accurate pic-
ture of the benefits of the Qthread model can be ob-
tained. In task parallelism situations, where
is used, Qthreads can outperform the FIFO tasking
layer by as much as 45%. In data parallelism situa-
tions, where and are used, Qthreads
can outperform the FIFO tasking layer by as much
as 30%. Further work is planned to improve syn-
chronization performance and eliminate additional
bottlenecks.

Qthreads is described inmore detail in Section 2.
It is followed by a discussion of the Chapel tasking
layer in Section 3. A discussion of the difficulties
in mapping the Chapel tasking layer to the Qthreads
API on single-node systems is in Section 4 and on
multi-node systems is in Section 5. The results of
our performance experiments are in Section 7.

2. Qthreads

Qthreads [4] is a cross-platform general purpose par-
allel runtime designed to support lightweight thread-
ing and synchronization within a flexible integrated
locality framework. Qthreads directly supports pro-
gramming with lightweight threads and a variety of
synchronizationmethods, including both non-block-
ing atomic operations and potentially blocking full/
empty bit (FEB) operations.

The Qthreads lightweight threading concept is
intended to match future hardware threading en-
vironments more closely than existing concepts in
three crucial aspects: anonymity, introspectable
limited resources, and inherent localization. Un-
like heavyweight threads, these threads do not sup-
port expensive features like per-thread identifiers,

per-thread signal vectors, or preemptive multitask-
ing. The thread scheduler in Qthreads presumes a
cooperative-multitasking approach, which provides
the flexibility to run threads in locations most con-
venient to the scheduler and the code. There are
two scheduling regimes within qthreads: the single-
threaded location mode, which does not use work-
stealing, and the multi-threaded hierarchical loca-
tionmode, which uses a sharedwork-queue between
multiple workers in a single location andwork-steal-
ing between locations.

Blocking synchronization, such aswhen perform-
ing a FEB operation, triggers a user-space context
switch. This context switch is done via function
calls without trapping into the kernel, and therefore
does not require saving as much state as preemp-
tive context switches—such as signal masks and the
full set of registers. This technique allows threads
to process largely uninterrupted until data is needed
that is not yet available, and allows the scheduler to
attempt to hide communication latency by switch-
ing tasks when data is needed. Logically, this only
hides communication latencies that take longer than
a context switch.

3. Chapel Tasking Layer

Likemany implementations of higher-level languages,
the Chapel [2] compiler is implemented by compil-
ing Chapel source code down to standard C. This
permits the Chapel compiler to focus on high-level
transformations and optimizationswhile leaving plat-
form-specific targeting and optimizations to the na-
tive C compiler on each platform. Most of the lower-
level code required to execute Chapel is implemented
using Chapel’s runtime libraries which are also im-
plemented in C and then linked to the generated code.

The Chapel runtime libraries are organized as a
number of sub-interfaces, each ofwhich implements
a specific subset of functionality such as commu-
nication, task management, memory management,
or timing routines. Each sub-interface is designed
such that several distinct implementations can be
supplied as long as each supports the interface’s se-
mantics. An end-user can select from among the im-
plementation options via an environment variable.

2

As an example, Chapel’s task management layer de-
faults to , a heavyweight but portable imple-
mentation that maps each task to a distinct POSIX
thread (pthread). The work described in this paper
adds a new lighter-weight tasking implementation
that can be selected by setting the envi-
ronment variable to .

Chapel’s taskmanagement sub-interface has two
main responsibilities: The first is to implement the
tasks that are generated by Chapel’s , ,
and statements; the second is to imple-
ment the full/empty semantics required to implement
Chapel’s synchronization variableswhich are the pri-
mary means of inter-task synchronization.

More specifically, the task interface must supply
calls for:

Startup/Teardown: Initialize the task layer for pro-
gram start-up and finalize it for program tear-
down;

Create Singleton Tasks: Used to implement Chapel’s
unstructured statements;

Create and Execute Task Lists: Used to implement
Chapel’s structured and state-
ments;

Synchronization: Used to implement the full/empty
semantics of Chapel’s synchronization vari-
ables;

Task Control: Functions such as yielding the pro-
cessor or sleeping;

Queries: To optionally support queries about the
number of tasks or threads in various states
(running, blocked, etc.)

4. Single Locale Challenges

The first step in adapting Chapel’s runtime to use
qthreads as its tasking librarywas to get basic single-
locale execution to work. The Chapel tasking layer
conveniently provides a relatively simple header file
of functions necessary for full functionality. Pro-
viding shim implementations of the expected func-
tions is a relatively simple exercise, but exposed un-

expected semantic issues. The work represented in
this section is reflected in Chapel release 1.3.01.

4.1. Startup and Teardown

The major challenge here was that the Chapel task-
ing interface did not specify what operations were
permitted before initializing the tasking library and
after shutting down the tasking layer. All previous
tasking layers had used native pthread constructs for
synchronization and therefore were not sensitive to
uses of synchronization variable that occurred prior
to initializing the tasking layer or after tearing it down.
Since qthreads’ synchronization variables are less
native, it held Chapel to a higher standard, requir-
ing the program startup/teardown to be reordered
to ensure that all task-based synchronization vari-
ables were used within the active scope of the task-
ing layer. This re-ordering involved re-architecting
some components of the Chapel runtime to avoid
relying on task synchronization in contexts where
tasks are not permitted. Furthermore, the tasking
interface has implicit semantics that are non-obvi-
ous, such as which functions may be called with-
out initializing the tasking layer. As a result of inte-
grating with qthreads, the interface was made more
strict, forbidding the use of any tasking layer func-
tions without initializing the tasking layer.

4.2. Unsupported Behavior

In addition to the implicit semantics of the task-
ing layer interface, there are a few semantics that
qthreads does not support. In particular, the Chapel
tasking interface assumes the existence of a limit
on the number of operating system kernel-level
threads. Qthreads, however, only allows the number
of kernel.level threads to be specified or, if unspec-
ified, will choose a number based on the number of
currently available processing cores. In most cases,
this is not a problem: the default Chapel limit is 255,
and most systems don’t have that many process-
ing cores. However, if running on a system where
the available processing cores exceeds the Chapel

1

3

limit, correct behavior is difficult to achieve because
the situation cannot be detected before an exces-
sive number of kernel threads have already been
spawned. It is possible to then either abort or shut-
down the qthread library and reinitialize, but both
violate the Chapel-specified thread limit before cor-
recting.

4.3. Remaining Problems

The most significant remaining difficulty is dealing
with stack space limits. Tasking libraries of all sorts
have two basic options with regard to stack space:
either allow tasks to grow their stack as necessary at
the cost of significant overhead to provide for de-
tecting and correcting stack overruns or set fixed
stack sizes that must not be violated. Qthreads ex-
poses this problem frequently, since it assumes par-
ticularly small (4k) default stack sizes. The result
is that codes can either segfault or silently corrupt
memory when they run off the end of their stacks.
Because the Chapel compiler does not currently have
a way to estimate the amount of stack space that
a given code will require per task, correct execu-
tion often requires the guess-and-check method of
selecting a sufficient amount of stack space. This
issue is a challenge for virtually all parallel compil-
ers and associated runtimes, particularly when deal-
ing with multiple ABI specifications in heteroge-
neous environments, and is not peculiar to Chapel
and qthreads.

5. Multi-Locale Challenges

The second part of getting Chapel to use qthreads as
its tasking library was to get multi-locale execution
to work. Multi-locale behavior uses a communica-
tion layer—most commonly, GASNet [1]—which
the tasking layer must inter-operate with.

5.1. Communication

The communication layer requires the ability tomake
blocking system calls in order to both send and wait
for network traffic. Blocking system calls require
special handling in user-level threading/tasking li-
braries because a blocking system call necessarily

stops the kernel-level thread, which means it can-
not participate in computation or processing user-
level threads/tasks. For GASNet, the simplest so-
lution was to establish a dedicated progress thread
to ensure that GASNet operations operate indepen-
dently of the task-layer’s computation.

The Chapel runtime system automatically allo-
cates a progress thread for GASNet on the first lo-
cale, but for all subsequent locales, the main ex-
ecution thread is considered the GASNet progress
thread, which means that the tasking library cannot
take ownership of the main execution thread. To
work around this, the qthread library needed to be
initialized from a separate thread, which required
careful bookkeeping to ensure that the same thread
is used for both starting up and shutting down the
tasking layer.

In the future, the creation of theGASNet progress
thread will be a function provided by the tasking
layer, to ensure that they can work together as ef-
ficiently as possible.

5.2. External Task Operations

One of the requirements of the communication progress
thread is that it must be able to spawn tasks and use
tasking synchronization primitives, despite not be-
ing a “task” itself. This required some workarounds
within qthreads to allow external kernel-level threads
to block on task-based synchronization primitives.
This was accomplished by treating synchronization
calls originating from outside the library as task spawn
calls. The task that is spawned serves as a proxy for
the external thread, using pthread mutexes to cause
the external thread to block until the proxy task re-
leases it.

6. Future Work

Synchronization is an interesting example of a mis-
match between tasking layer assumptions and task-
ing library implementation. The Chapel tasking in-
terface presupposes that the tasking library only pro-
videsmutex-like synchronization primitives, and uses
this mutex semantic to implement the full/empty-
style synchronization that the Chapel language’s

4

variables require. In general, this is a reasonable
assumption; while the use of full/empty semantics
in the language stemmed from the DARPA Cascade
project architecture, commodity architectures do not
support native full/empty synchronization. The cur-
rent approach is designed for generality and porta-
bility.

Some tasking implementations, however, such
as qthreads and the MTA backend (which requires
specialized hardware), have their own implementa-
tions of full/empty synchronization that can be quite
fast. In order to support the semantics of the Chapel
tasking interface, both the qthreads and MTA back-
ends are required to use full/empty synchronization
to providemutex-like synchronization, which is then
used to implement full/empty semantics. This mis-
match in interface assumptions about the available
synchronization semantics creates a great deal of over-
head around synchronization operations.

It is possible to modify the Chapel runtime task-
ing layer interface to allow the tasking layer to im-
plement the sync variable semantics directly, thus
enabling the use of hardware primitives or new ideas
about efficient sync variable implementation within
the tasking layer. This would greatly improve syn-
chronization efficiency, but may have some costs.
One option to support high-speed full/empty syn-
chronization is to use qthread variables,
which keep statewithin the 64-bit word, thereby lim-
iting the number of available bits. It may be use-
ful to allow the user to choose how many bits are
absolutely required to a greater degree than Chapel
currently allows, and use different synchronization
mechanisms based on those requirements. Another
potential challenge includes considering the effect
of compiler-introduced copies of synchronization vari-
ables since identity matters in some tasking libraries
and copies may not only introduce extra synchro-
nization operations, butmay not transfer waiters across
copies. The details of enabling such a direct imple-
mentation, however, require some creative thinking,
and as such remains an open problem.

7. Performance

To demonstrate both the functionality and the per-
formance impact of using the qthread tasking layer
instead of the default FIFO tasking layer implemen-
tation, several benchmarks were run. Two kinds of
parallelism are examined. First, task parallelism,
as expressed by the quicksort and tree-exploration
benchmarks provide as part of the Chapel distribu-
tion, is used to demonstrate the relative overhead of
the Qthread tasking layer. Then data parallelism,
as used in the HPCC benchmark suite [3], also part
of the Chapel distribution, is used to demonstrate
the broad applicability of the Qthread tasking layer’s
performance. As only the STREAM and Rando-
mAccess benchmarks are described as “scalable” in
the Chapel documentation, only results from those
benchmarks are presented.

The results presented herewere obtained on dual-
socket twelve-core 3.33GHz Intel Xeon X5680 sys-
tem (with HyperThreading and power management
turned off). Chapel was compiled with GCC 4.1.2.
All tests were done using a single Chapel locale.

7.1. QuickSort

This benchmark is a basic naïve implementation of
a parallel quicksort. The benchmark picks a pivot
value and partitions around the pivot value in serial
and then uses a statement to spawn tasks to
recursively execute quicksort on each partition. The
benchmark has the capacity to serialize, via a recur-
sive depth threshold, rather than spawn the maxi-
mum number of tasks. However, to demonstrate the
behavior of the tasking library, the threshold for the
results presented in Figure 1 was set high enough so
as to never serialize.

The FIFO tasking library ranges from 182% to
71% slower than the Qthread tasking library in this
benchmark, trending toward 80% slower as the prob-
lem size increases. With an array of 228 elements,
the FIFO implementation executed in 86.6 seconds,
while the Qthread implementation took only 46.8
seconds.

5

10-3

10-2

10-1

100

101

102

214 216 218 220 222 224 226 228

R
un

tim
e

(s
ec

s)

Array Elements

Qthreads
FIFO

Figure 1: Chapel QuickSort

10-3

10-2

10-1

100

101

102

103

212 214 216 218 220 222 224 226 228

R
un

tim
e

(s
ec

s)

Tree Nodes

Qthreads
FIFO

Figure 2: Chapel Tree Exploration

7.2. Tree Exploration

This benchmark constructs a binary tree in parallel
where each node in the tree has a unique ID. It then
iterates over the tree to compute the sum of the ID’s
in parallel using .

Figure 2 illustrates the performance benefit of
using the Qthread tasking layer. The FIFO task-
ing library ranges from 80% to 50% slower than the
Qthread tasking layer, trending toward 50% as the
problem size increases. With a tree of 228 nodes,
the FIFO implementation executed in 186 seconds,
while theQthread implementation took only 124 sec-
onds.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128

R
u

n
tim

e
 (

se
cs

)

Number of Threads/Tasks

Qthreads
FIFO

Figure 3: HPCC STREAM

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128

R
u

n
tim

e
 (

se
cs

)

Number of Threads/Tasks

Qthreads
FIFO

Figure 4: HPCC STREAM-EP

7.3. STREAM

This benchmark is a relatively simple program de-
signed to measure sustainable memory bandwidth
and the corresponding computation rate for simple
vector kernels. There is also an “embarrassingly par-
allel” (EP) version that does not do inter-locale com-
munication.

Figures 3 and 4 represent results run on a 6GB
problem size. The results demonstrate that the use of
the Qthread tasking layer provides significant per-
formance benefits over the FIFO tasking layer, when
more than a single thread/task was used. The FIFO
tasking implementation provides performance that
is approximately 25% slower than theQthreads task-
ing implementation in the STREAMbenchmark, and

6

approximately 45% slower in the STREAM-EP bench-
mark. Some of the performance credit may be due
to Qthread’s automatic CPU-pinning, as well as to
its lightweight task spawning.

Interestingly, the EP variant of the benchmark,
in Figure 4, shows a larger performance improve-
ment than the non-EP variant. This is a result of the
synchronization overhead discussed in Section 6. The
EP variant of the benchmark uses a to spawn
tasks to all of the available locales— in this case,
there’s only one—and each of those tasks then uses
a parallel to implement the body of the bench-
mark. This is different from the non-EP variant in
that the non-EP variant does not use the .
The performance difference is a consequence of the
fact that the main thread is not a task within the task-
ing library, and synchronization between that non-
task and tasks is not as efficient as synchronization
between tasks. In the non-EP version, synchroniza-
tion to wait for all the parallel work in the
must use a combination of task spawns and pthread
mutexes to allow the main task to wait, however in
the EP version, it can use the inter-task synchroniza-
tion directly.

7.4. RandomAccess

This benchmark measures the rate of random inte-
ger updates to memory; it is sometimes referred to
as the GUPS benchmark. It is designed to stress
the memory system of the machine by rendering the
data cache almost useless. As such, one would ex-
pect that the performance of the tasking layer would
be relatively minimal.

Figure 5 largely bears out that expectation. The
Qthread tasking layer provides some small perfor-
mance benefit for multiple tasks, but the benefit is
relatively small—around 15%. As the number of
tasks increases, the percentage of the memory band-
width in use increases, which is the ultimate perfor-
mance bottleneck for this benchmark.

8. Conclusion

The most important result of this paper is that the
Chapel tasking layer can indeed be successfully run

101

102

103

 1 2 4 8 16 32 64 128

R
un

tim
e

(s
ec

s)

Number of Threads/Tasks

Qthreads
FIFO

Figure 5: HPCC RandomAccess

on top of third-party tasking libraries, like Qthreads.
There are unexpected semanticmis-matches that have
the potential for creating artificial performance prob-
lems. Beyond the basic synchronization issues, there
are optimization concerns, including the behavior of
tasks within a standard multi-socket multi-core lo-
cale that need to be addresses for optimum perfor-
mance. However, Chapel proves to be a particularly
powerful framework for expressing task parallelism,
and benefits from a true task-parallel runtime like
Qthreads.

References

[1] Dan Bonachea. GASNet specification, v1.1.
Technical Report CSD-02-1207, University of
California Berkeley, October 2002.

[2] David Callahan, Brad L. Chamberlain, and
Hans P. Zima. The Cascade high productiv-
ity language. In Proceedings of the Ninth In-
ternational Workshop on High-Level Parallel
Programming Models and Supportive Environ-
ments, pages 52–60. IEEE, April 2004.

[3] Piotr R Luszczek, David H Bailey, Jack J Don-
garra, Jeremy Kepner, Robert F Lucas, Rolf
Rabenseifner, andDaisuke Takahashi. TheHPC
challenge (HPCC) benchmark suite. In Pro-
ceedings of the 2006 ACM/IEEE conference on

7

Supercomputing, SC ’06, New York, NY, USA,
2006. ACM.

[4] Kyle B. Wheeler, Richard C. Murphy, and Dou-
glas Thain. Qthreads: An API for programming
with millions of lightweight threads. In IPDPS
’08: Proceedings of the 22nd International
Symposium on Parallel and Distributed Pro-
cessing, pages 1–8. MTAAP ’08, IEEE Com-
puter Society Press, April 2008.

8

