
Introducing the Graph 500

Richard C. Murphy Kyle B. Wheeler Brian W. Barrett
James A. Ang

Sandia National Laboratories∗

, PO Box 5800, MS-1319, Albuquerque, NM 87185
{rcmurph,kbwheel,bwbarre,jaang}@sandia.gov

May 5, 2010

1 Introduction: Why Another
Benchmark?

In the words of Lord Kelvin, “if you cannot mea-
sure it, you cannot improve it”. One of the long-
lasting successes of the Top 500 list is sustained,
community-wide floating point performance improve-
ment. Emerging large-data problems, either result-
ing from measured real-world phenomena or as fur-
ther processing of data generated by simulation, have
radically different performance characteristics and ar-
chitectural requirements. As the community contem-
plates scaling to large-scale HPC resources to solve
these problems, we are challenged by the reality that
supercomputers are typically optimized for the 3D
simulation of physics, not large-scale, data-driven
analysis. Consequently, the community contemplat-
ing this kind of analysis requires a new yard stick for
evaluating future platforms.

Since the invention of the von Neumann archi-
tecture, the physics simulation has largely driven
the development and evolution of High Performance
Computing. This allows scientists and engineers to
test hypotheses, designs, and ask “what if” ques-
tions. Emerging informatics and analytics applica-
tions are different both in purpose and structure.
While physics simulations typically are core-memory
sized, floating point intensive, and well-structured,
informatics applications tend to be out of core, inte-
ger oriented, and unstructured. (It could be argued
that physics simulations are moving in this direction.)
The graph abstraction is a powerful model in com-

∗Sandia is a multiprogram laboratory operated by San-
dia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

puter science and discrete math for addressing infor-
matics problems. The purpose of informatics is not
typically to ask a “what if,” but to search through
large datasets and discover hypotheses to be tested.
Today, these data sets are collected through mech-
anisms including scientific experiments, simulation
outputs, and social network formation. The Graph
500 list recognizes these fundamental differences and
serves to focus the community. This is analogous to
and inspired by the Top 500 list, which served as a
focal point for the simulation of physics community.

Work at Sandia has demonstrated that the per-
formance properties of large-scale graph problems
are very different from those of physics applications.
Complex graph applications exhibit very low spatial
and temporal locality (or reuse of data near data al-
ready used and reuse of data over time respectively).
It also exhibits a significantly larger dataset than is
typical for real-world physics applications or industry
benchmarks. Compared to the LINPACK benchmark
that defines the Top 500 list, an example graph prob-
lem consumes 6,900 times the unique data, and ex-
hibits 2.6% the temporal reuse and 55% the temporal
reuse[8].

The Graph 500’s defining benchmark and associ-
ated metrics are being formed by the Graph 500 steer-
ing committee. The list and associated benchmark
will be announced at the International Supercomput-
ing Conference in June of 2010, and the first ranking
unveiled at Supercomputing 2010 in November

To succeed, this new benchmark must exhibit the
following properties:

1. Fundamental Kernel with Broad Applica-
tion Reach: rather than a single transitory
point application, the benchmark must reflect a
class of algorithms that impact many applica-

1

tions.

2. Map to Real World Problems: results from
the benchmark should map back to actual prob-
lems, rather than exhibiting a theoretical or
“pure computer science” result.

3. Reflect Real Data Sets (that are impor-
tant!): similar to mapping to real problems, the
data sets should exhibit real-world patterns. Ap-
plication performance for many real-world prob-
lems is highly input-deck dependent.

Many of these properties have been observed with
prior benchmark suites[2, 8, 7, 1, 5].

The proposed benchmark should push industry
to build machines that benefit the new application
set, which in turn needs to be economically impor-
tant enough to motivate industry R&D investments.
Graphs are a fundamental data structure that chal-
lenge current architectures and that appear in key
large-scale data analysis problems. Many of those
problems (discussed in Section 2) are large enough to
support industry architecture investments – indeed,
they have the potential to far surpass traditional high
performance computing.

The remainder of this paper is organized as fol-
lows: Section 2 enumerates the business areas un-
derlying the Graph 500 group’s thinking. Section 3
describes the high-level kernels we propose as funda-
mental problems. Section 4 describes the reference
implementations we will make available to the com-
munity. Section 5 describes the trends in architecture
and underlying implementation technology that we
hope to impact. Section 6 provides some preliminary
results, and Section 7 provides the conclusions.

2 Data Sets

Table 1 summarizes the Graph 500 benchmark’s pro-
posed data sets, representing critical business and sci-
ence problems. Many are easily beyond petascale to-
day, and limited in size only by available computing
resources.

3 Kernels

We propose three key classes of graph kernels
with multiple possible implementations, several of
which have been demonstrated to stress modern
computers[8, 6].

1. Search: Concurrent Search, requiring traversal
of the graph and labeling or identification of a re-
sult. A parallel Breadth First Search using Delta
Stepping is an example of this kind of search,
though the final Graph 500 kernel may have more
relaxed requirements.

2. Optimization: Single Source Shortest Path is
a core example optimization problem proposed
by the Graph 500 committee. Many parallel al-
gorithms exist.

3. Edge Oriented: is an independent set in a
graph that is not a subset of any other indepen-
dent set.

There are numerous practical requirements for cre-
ating a benchmark from these core kernels. For exam-
ple, the Edge Oriented kernel lends itself to solutions
from random algorithms, which if chosen correctly
against known data sets could produce overly opti-
mistic or nonreproducible results. These approaches
will be eliminated in the rules for benchmark submis-
sion.

4 Reference Implementations

The Graph 500 committee will allow both reference
implementation and highly optimized results to be
submitted to the list, very much like the SPEC bench-
mark’s base and peak measures.

Distributed Memory: This is the domi-
nant model for high performance computing, and
is reflected in the Parallel Boost Graph Library
(PBGL)[4].

Cloud/MapReduce: More reflective of industry
trends, and represents a key programming model for
loosely coupled architectures.

Multithreaded Shared Memory: This refer-
ence implementation will support large-scale shared
memory machines, like SMPs or the Cray XMT. Cur-
rently, this is the preferred programming model for
many graph applications. This is reflected in San-
dia’s Multithreaded Graph Library (MTGL)

The Graph 500 committee will allow alternative
implementations to enable platforms like the Lex-
isNexis Data Analytic Supercomputer (DAS) which
rely on customized programming languages and run-
time environments rather than custom hardware to
solve graph problems.

2

Table 1: Example Large-Scale Data Sets
Area Typical Size Description
Cybersecurity 15 Billion Log Entries/Day (for

large enterprises)
Full data scan with end-to-end join re-
quired

Medical Informatics 50M patient records, 20-200
records/patient, billions of indi-
vidual records

Entity Resolution Required

Data Enrichment Petabytes of Data (or more) Example, Maritime Domain Awareness
with hundreds of millions of transponders,
tens of thousands of ships, and tens of mil-
lions of pieces of bulk cargo

Social Networks Almost Unbounded Example, Facebook
Symbolic Networks Petabytes Example, human brain: 25B neurons with

approximately 7K connections each

5 Architecture and Technology
Trends

Graph problems are often more difficult to optimize
on modern architectures than their scientific or indus-
try counterparts[8]. They typically require “global
reach” across the machine, whereas scientific appli-
cations primarily require local communication (across
the six faces of a cube in a 3D decomposition). This is
often expressed as a requirement for a global address
space, but is more accurately thought of as a require-
ment for efficient global namespace management. Re-
gardless of implementation (layer or mechanism),
most platforms provide poor global reach. Graph
problems often present very sparse, fine-grained data
access, requiring a very high message rate from the
network (regardless of whether or not the algorithm
is a distributed or shared memory algorithm). This is
again challenging for supercomputer platforms, espe-
cially those designed to facilitate bulk message trans-
fers in a BSP style of computation. As a result, caches
and other capabilities typical in modern processor de-
sign tend to have limited impact on these problems.

Unfortunately, underlying CMOS technology
trends reinforce trends in architectures that will not
support the business areas described in Section 2.

Figure 1 depicts the trend in chip packaging ver-
sus transistors. The projections show that over the
next decade, every communication channel will have
to support an order of magnitude more transistors
than today. Technologies such as moving to serial
signaling, 3D integration, and other disruptive tech-
niques may provide a one-time gain over conventional
approaches. However, regardless of the technology

10
5

10
6

10
7

 2010 2012 2014 2016 2018 2020 2022

F
u
n
c
ti
o
n
s
 P

e
r

C
o
n
ta

c
t

Year

Available Communication Per Compute Function

Figure 1: Number of functions (transistors) sup-
ported by each off-chip contact available for commu-
nication according to the ITRS 2008 roadmap[3].

every communication channel will have to support
significantly more computation than it does today.
Given the sparse, fine-grained communication pat-
terns required by the problems supported by the
Graph 500 list, this trend in technology will push
architectures away from supporting the Graph 500
application base. Making the problem space relevant
to computer architects is a key contribution of the
Graph 500.

The compute/communication trend towards imbal-
ance has a historical analog in the Memory Wall[9].
Originally the memory wall represented a disparity
between memory access times and processor cycle
times. With processor clock rates flattening, this dis-
parity will stabilize (or possibly even improve).

3

The processor/memory communication model will
not improve without significant investment. This
can be seen in today’s memory systems that may
support increased bandwidth, but decreased capacity
(per core) and fewer independent channels. Key ar-
chitectural techniques including caching, out-of-order
execution, branch prediction, and predication were
designed to allow processors to cope with the memory
wall. Modern architectures are exhibiting increased
capabilities for structured memory access (as seen in
GPUs), scratchpad memories to exploit high tempo-
ral locality operations, and well-scripted communica-
tion. These are all designed to address the dispar-
ity between compute capabilities and communication
channels, but it is unclear if they will significantly
impact large-scale data problems exemplified by the
Graph 500 kernels.

6 Preliminary Results

Figure 2 shows some preliminary results for the con-
current search benchmark. The problem is 14GB
graph generated by R-MAT with the following pa-
rameters: a = 0.57, b = 0.19, c = 0.19, and d = 0.05,
which provides a steep degree distribution power-law
graph. This produces a maximum degree of approxi-
mately 200, 000, with 225 vertices and 228 edges.

Figure 2(a) depicts the results for the XMT and
(b) shows results for a Nehalem, Niagara2, and an
Altix 37000 platform. Unfortunately, it is very dif-
ficult to fairly and accurately compare smaller SMP
platforms with the XMT, despite the fact that XMT
provides better absolute performance for this small
problem. We would caution against direct compari-
son between the two datasets. There are two reasons
for not comparing across those platform sets:

First, the problem is fundamentally unstructured
and responds well to increased memory parallelism.
The XMT hashes memory throughout the machine,
thus without re-wiring the platform it is impossible
to “restrict” the memory to a small fixed number of
nodes. In effect, every memory controller on the ma-
chine is used for every problem. While this is an
advantage for single benchmark runs with much of
the machine idle, it is a disadvantage when multi-
ple processes are competing for bandwidth across the
machine (which would be a more realistic system uti-
lization scenario outside benchmarking).

Second, the MTGL-based implementation of
search is highly tuned for the XMT platform, and not
necessarily for other platforms. An apples-to-apples

 1

 10

 100

 1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Procs (Teams)

XMT

(a)

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Threads

Nehalem

Niagara2

Altix

(b)

Figure 2: Concurrent Search Results on (a) XMT and
(b) Nehalem, Niagara2, and Altix Platforms

comparison running the same code is consequently
unfair, and similarly highly optimized implementa-
tions on other platforms are only now being gener-
ated.

The Graph 500 benchmark will address the latter
problem, and may address the former by requiring
full-memory sized runs with normalization of the re-
sults a posteriori.

All the results show limited scalability, reflecting
the difficulty in addressing even simple graph prob-
lems.

7 Conclusions

This paper has discussed the need to create a Graph
500 list, how the problems represented by the pro-

4

posed benchmarks are different from scientific com-
puting and commercial problems, and the implica-
tions for commercial architectures. The proposed
Graph 500 data sets represent real-world applications
of interest in science, engineering, and business, and
the algorithms are core to many large-scale data prob-
lems. We propose three reference implementations
for shared memory/multithreaded, distributed mem-
ory, and MapReduce platforms.

We have demonstrated that there is a pressing need
for the Graph 500 benchmark to address the dis-
parity between architectural capabilities enabled by
the underlying technology and application require-
ments. These trends, combined with the existing
challenges for running large-scale graph applications
require an application push from an economically im-
portant market segment to drive industry towards vi-
able solutions.

We plan to roll out the Graph 500 benchmark in
multiple venues over the summer of 2010, and compile
the first list in the Fall of 2010.

Acknowledgments

This paper reflects the deliberations of the Graph 500
Steering Committee, and preliminary results gener-
ated at Sandia to help motivate the problem. The
authors would like to thank the other members of the
Graph 500 committee for their dedication to creating
a new benchmark, their time in debating the right
path forward, and their considered opinions (which
we hope are also reflected in this work). Errors or
omissions may be blamed on the authors of this pa-
per. The other committee members are: David Bader
(Georgia Tech), Jon Berry (Sandia), Bill Brantley
(AMD), Almadena Chtchelkanova (NSF), John Daly
(DoD), John Feo (PNL), Michael Garland (NVIDIA),
John Gilbert (UCSB), Bill Harrod (DARPA), Bruce
Hendrickson (Sandia), Jure Leskovec (Stanford), Bob
Lucas (USC/ISI), Andrew Lumsdaine (Indiana Uni-
versity), Mike Merrill (DoD), Hans Meuer (Univer-
sity of Mannheim), David Mizel (Cray), Shoaib Mufti
(Cray), Nick Nystrom (PSC), Fabrizio Petrini (IBM),
Wilf Pinfold (Intel), Steve Poole (ORNL), Arun Ro-
drigues (Sandia), Rob Schreiber (HP), John Simmons
(LexisNexis), Marc Snir (UIUC), Thomas Sterling
(LSU), Blair Sullivan (ORNL), T.C. Tuan (DoD),
Jeff Vetter (ORNL), Mike Vildibill (Oracle).

References

[1] Vishal Aslot and Rudolf Eigenmann. Performance
characteristics of the spec omp2001 benchmarks.
SIGARCH Comput. Archit. News, 29(5):31–40,
2001.

[2] Daniel Citron, John Hennessy, David Patterson,
and Gurindar Sohi. The use and abuse of SPEC:
An ISCA panel. IEEE Mico, 23(4):73–77, July-
August 2003.

[3] ITRS Committee. International Technol-
ogy Roadmap for Semiconductors 2008 Up-
date. http://www.itrs.net/Links/2008ITRS/
Home2008.htm.

[4] Nick Edmonds, Alex Breuer, Douglas Gregor, and
Andrew Lumsdaine. Single-source shortest paths
with the Parallel Boost Graph Library. In The
Ninth DIMACS Implementation Challenge: The
Shortest Path Problem, Piscataway, NJ, Novem-
ber 2006.

[5] Swathi Tanjore Gurumani and Aleksandar
Milenkovic. Execution characteristics of SPEC
CPU2000 benchmarks: Intel C++ vs. Microsoft
VC++. In Proceedings of the 42nd annual South-
east regional conference, pages 261–266. ACM
Press, 2004.

[6] Richard C. Murphy. On the Effects of Mem-
ory Latency and Bandwidth on Supercomputer
Application Performance. In IEEE International
Symposium on Workload Characterization 2007
(IISWC2007), September 27-29, 2007.

[7] Richard C. Murphy, Jonathan Berry, William
McLendon, Bruce Hendrickson, Douglas Gregor,
and Andrew Lumsdaine. DFS: A Simple to Write
Yet Difficult to Execute Benchmark. In IEEE In-
ternational Symposium on Workload Characteri-
zation 2006 (IISWC06), October 25-27, 2006.

[8] Richard C. Murphy and Peter M. Kogge. On
the Memory Access Patterns of Supercomputer
Applications: Benchmark Selection and its Im-
plications. IEEE Transactions on Computers,
56(7):937–945, July 2007.

[9] Wm. A. Wulf and Sally A. McKee. Hitting the
memory wall: Implications of the obvious. Com-
puter Architecture News, 23(1):20–24, 1995.

5

