
Hardware/Software Co-Design for High Performance
Computing: Challenges and Opportunities

X. Sharon Hu
Department of Computer
Science and Engineering
University of Notre Dame
Notre Dame, IN, USA
shu@nd.edu

Richard C. Murphy
Scalable Computer

Architecture Department
Sandia National Laboratories
Albuquerque, NM, USA
rcmurph@sandia.gov

Sudip Dosanjh
Computer and Software
Systems Department

Sandia National Laboratories
Albuquerque, NM, USA
ssdosan@sandia.gov

Kunle Olukotun
Department of Electrical

Engineering
Stanford University
Stanford, CA, USA

kunle@stanford.edu

Stephen Poole
Computational Sciences

Division
Oak Ridge National Lab
Oak Ridge, TN, USA
spoole@ornl.gov

ABSTRACT
This special session aims to introduce to the hardware/software
codesign community challenges and opportunities in design-
ing high performance computing (HPC) systems. Though
embedded system design and HPC system design have tra-
ditionally been considered as two separate areas of research,
they in fact share quite some common features, especially as
CMOS devices continue along their scaling trends and the
HPC community hits hard power and energy limits. Under-
standing the similarities and differences between the design
practices adopted in the two areas will help bridge the two
communities and lead to design tool developments benefiting
both communities.

Categories and Subject Descriptors
C.0 [General]: Systems specification methodology; C.4 [Per-
formance of Systems]: Design studies

General Terms
Design, measurement, performance

Keywords
High performance computing, hardware/software codesign

1. INTRODUCTION
High performance computing (HPC) has long been con-

sidered a different breed from embedded computing (EC).
The two corresponding platforms, targeting at two separate
markets, handle disparate workloads with different perfor-
mance concerns. It seems natural for the two communities
to have diverse design philosophies and design tools.

Hardware/software codesign, as a design paradigm intro-
duced in the early nineties, has been studied extensively
by the EC system design community. Tremendous progress

Copyright is held by the author/owner(s).
CODES+ISSS’10, October 24–29, 2010, Scottsdale, Arizona, USA.
ACM 978-1-60558-905-3/10/10.

has been achieved in this area of research, which has lead
to the birth of new languages, new CAD tools, new compa-
nies, etc. The integrated design concept has brought new
thinking to many aspects of computer system design includ-
ing process scheduling, communication protocols, memory
management, software development, as well as design of
application-specific processors and reconfigurable architec-
tures. However, the impact of hardware/software design has
mostly be limited within the EC system domain.

As the CMOS scaling trends (in terms of density, per-
formance and power) continue, the boundary between HPC
and EC design practices is becoming blurry. The HPC com-
munity has recognized that it is no longer affordable to sim-
ply procure faster machines with bigger memories and that
rigorous analysis and design tools can be indispensable in
order to meet power/performance requirements of HPC sys-
tems. This recognition presents a unique opportunity for the
hardware/software researchers to expand their influence and
advance the design technologies for HPC, and for the HPC
system designers to leverage the knowledge and experience
gained in the last two-decades’ hardware/software codesign
research.

In the rest of this extended abstract, we comment on gen-
eral practices that have been adopted for specifying and de-
signing HPC systems as well as their limitations, and high-
light key challenges that the HPC system design community
is facing. We also briefly sample recent progress toward ad-
dressing some specific design problems in HPC systems. We
end the paper by examining similarities and differences be-
tween HPC and EC and discussing what aspects of HW/SW
co-design may be useful for designing HPC systems and what
aspects need further study.

2. HPC SYSTEM DESIGN PRACTICES
As a general practice, the procurements of supercomput-

ers for HPC have often been based on some combination of
(1) benchmarks, (2) byte to flop ratios (e.g., the bandwidth
divided by the floating point rate must be greater than some
number) and (3) aggregate requirements. The Red Storm [6]
and Ceilo [1] procurements further required the bidding com-

63



panies to guarantee that the supercomputer’s performance
on a range of applications would be a certain factor greater
than the performance of these applications on a previous
supercomputer.

It is not difficult to see from the above description that
trying to define the current HPC design process can be a
challenge. The challenge actually exists at most all levels
in the process. This lack of a cohesive co-design process
has been a gradual process of degradation over the past few
decades. There are many symptoms we should have seen
along the way, that seem to have gone either unnoticed or
at least not acted upon. For example, overly constrained de-
sign requirements (“work on everything but the processor”),
increasing system imbalance, decreased processor utilization
have all contributed to increased energy cost. It is now esti-
mated that many HPC systems will cost as much to power
over their lifetime as to purchase.

The HPC community has by in large lost the capability
to have a major impact on a few elements of the base el-
ements of a computing system. As we moved away from
HPC centric processors a few decades ago, we currently are
forced to deal with COTS processors. These processors by
in large are NOT designed with HPC in mind as their pri-
mary or even secondary target. With this in mind, the HPC
community has had to“live with what we get”. This philos-
ophy/constraint is extended into the software arena as well.
Various government elements have spent hundreds of mil-
lions of dollars trying to improve the software space. Un-
fortunately, it has not had a much better impact on our
plight, and it seems that most of these expeditions are only
expensive band-aids on a severe wound. We have gone from
25-50% utilization in some HPC applications to 3-7% uti-
lization of these HPC systems. The lower utilization leads
to increased energy waste.

The general practice and the methods adopted for HPC
system design work well when the architectures are well un-
derstood and meaningful measurements can be made. How-
ever, new design methodologies are desperately needed now
because (1) there is a significant architectural change under-
way; (2) both hardware and software R&D will be needed
to overcome the challenges associated with Exascale com-
puting; and (3) we are approaching hard power and energy
constraints.

HPC researchers are keenly aware of the problem and have
started to investigate ways to mitigate the major design chal-
lenges. By far the biggest design challenge is increasing the
energy efficiency of HPC systems to enable Exascale com-
puting. One approach to energy efficiency has been the move
to simpler processors. Simpler processors reduce the num-
ber of logic transitions per instruction, while adding more of
them in parallel overcomes the per core performance loss and
increases aggregate performance. Unfortunately one cannot
do this forever, since at some point reducing each processor’s
performance has only a small effect on energy efficiency but
dramatically increases the level of application parallelism
required.

The most effective method of achieving energy efficiency
is reformulating a task so it needs fewer operations to com-
plete. This sort of “customization” of the processor architec-
ture can improve the energy efficiency by an order of mag-
nitude. The Green Flash project has taken steps down this
path with the use of customized embedded processors for
large-scale climate simulation [3]. One approach that has

the potential to simplify the programming of HPC systems
and make possible more efficient customization is super-
optimization using domain-specific knowledge captured by
a domain specific language (DSL) [2].

3. LOOKING FORWARD
The battle that is being fought by the HPC community

bears resemblance to what the EC community has gone
through two decades ago. In fact, the HPC and the EC
communities face many similar obstacles in both software,
hardware and application implementation in the resulting
systems. Both communities are dealing with ever-increasing
hardware capabilities with significant architectural changes,
have many overlapping figures of merits, and not to mention
the growing design productivity gap. Realizing these factors
has helped generate greater interest in hardware/software
co-design in the HPC community [4, 5].

There is much to be gained by mining co-design research
that has been done by the EC community. However, the
methodology will need to developed further for HPC be-
cause of several complicating factors: (1) architectures must
be optimized to support many applications, (2) HPC appli-
cations can be very complex (many have millions of lines of
code), (3) supercomputers are very complex, and (4) appli-
cations will change significantly during the next decade (a
new programming model will be adopted and applications
will need to manage on-node locality and deal with an ex-
plosion in parallelism). These challenges will bring exciting
opportunities to both EC and HPC design communities and
propel the hardware/software co-design research area to a
new height.

4. REFERENCES
[1] J. Ang, D. Doerfler, S. Dosanjh, K. Koch, J. Morrison

and M. Vigil, “The alliance for computing at the
extreme scale,” Proceedings of the Cray Users Group
Meeting , 2010.

[2] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. Sujeeth,
P. Hanrahan, M. Odersky and K. Olukotun, “Language
virtualization for heterogeneous parallel computing,”
Onward! , October 2010.

[3] D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C.
Rowen, J. Krueger, S. Kamil and M. Mohiyuddin,
“Energy-efficient computing for extreme-scale science,”
IEEE Computer , Vol. 42, No. 11, pp. 62–71, November
2009.

[4] S. Dosanjh, “Exascale computing and the role of
codesign,” International Advanced Workshop on High
Performance Computing, Grids and Clouds, Cetraro,
Italy, 2010.
http://www.hpcc.unical.it/hpc2010/ctrbs/dosanjh.pdf

[5] A. Geist and S. Dosanjh, “IESP exascale challenge:
co-design of architectures and algorithms,”
International Journal of High Performance Computing ,
Vol. 23, No. 4, 2009, pp. 401–402.

[6] J. Tomkins, R. Brightwell, W. Camp, S. Dosanjh, et.
al., “The Red Storm architecture and early experiences
with multi-core processors,” International Journal of
Distributed Systems and Technologies, Vol. 1, Issue 2,
2010, pp. 74-93.

64


